An Efficient ANFIS-Based PI Controller for Maximum Power Point Tracking of PV Systems

In this paper, an efficient adaptive neuro-fuzzy inference system (ANFIS)-based PI controller for maximum power point tracking (MPPT) of photovoltaic (PV) systems is proposed. The proposed ANFIS-based MPPT controller has the capacity to track the optimum point under the rapidly changing irradiation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian Journal for Science and Engineering 2015-09, Vol.40 (9), p.2641-2651
Hauptverfasser: Abido, M. A., Khalid, M. Sheraz, Worku, Muhammed Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an efficient adaptive neuro-fuzzy inference system (ANFIS)-based PI controller for maximum power point tracking (MPPT) of photovoltaic (PV) systems is proposed. The proposed ANFIS-based MPPT controller has the capacity to track the optimum point under the rapidly changing irradiation conditions with less fluctuations in steady state. The training data of the proposed controller are extracted from a precise PV model developed. The performance of the proposed controller is compared with the conventional incremental conductance method. Finally, the proposed ANFIS-based MPPT controller has been implemented experimentally using real-time digital simulator (RTDS) to simulate a PV system in real time, while the proposed ANFIS-based controller is implemented on dSPACE 1104 controller. Simulation and experimental results show that the proposed ANFIS-based MPPT controller has fast and accurate dynamic response with less fluctuations in steady state. In addition, its performance is superior as compared to the conventional methods.
ISSN:1319-8025
2191-4281
DOI:10.1007/s13369-015-1749-z