Low-Temperature Processable High-Performance Electrochemically Deposited p-Type Cuprous Oxides Achieved by Incorporating a Small Amount of Antimony

The development of an electrochemically robust method for the low‐temperature deposition of cuprous oxide (Cu2O) thin films with reliable and conductive p‐type characteristics could yield breakthroughs in earth abundant and ecofriendly all oxide‐based photoelectronic devices. The incorporation of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2015-08, Vol.25 (32), p.5214-5221
Hauptverfasser: Baek, Seung Ki, Kwon, Yong Hun, Shin, Jae Hui, Lee, Ho Seong, Cho, Hyung Koun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of an electrochemically robust method for the low‐temperature deposition of cuprous oxide (Cu2O) thin films with reliable and conductive p‐type characteristics could yield breakthroughs in earth abundant and ecofriendly all oxide‐based photoelectronic devices. The incorporation of the group‐V element antimony (Sb) in the solution‐based electrodeposition process has been investigated. A small amount of Sb (1.2 at%) in the Cu2O resulted in rapid nucleation and coalescence at the initial stage of electrochemical reaction, and finally made the surface morphology smooth in 2D. The growth behavior changed due to Sb addition and produced a strong diffraction intensity, single‐domain‐like diffraction patterns, and low angle tilt boundaries in the Cu2O:Sb film, implying extremely improved crystallinity. As a result, these films exhibited extraordinary optical transmittance and band‐to‐band photoluminescence emission as well as higher electrical conductivity. The Cu/Cu2O:Sb Schottky diode showed good rectifying characteristics and more sensible photoresponsibility. Highly stable p‐type cuprous oxide films with extremely improved optical performance are achieved by simple low‐temperature electrochemical deposition in the presence of antimony dopants. The Cu2O:Sb films demonstrate single‐domain‐like crystallinity with low angle tilted boundaries and exhibit semitransparent properties.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201501323