Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer

Ultrathin polythiophene films prepared via electrochemical polymerization is successfully used as the hole-transporting material, substituting conventional HTM-PEDOT:PSS, in planar p-i-n CH3NH3PbI3 perovskite-based solar cells, affording a series of ITO/polythiophene/CH3NHBPbIB/C60/BCP/Ag devices. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2015-08, Vol.8 (8), p.2474-2480
Hauptverfasser: Yan, Weibo, Li, Yunlong, Li, Yu, Ye, Senyun, Liu, Zhiwei, Wang, Shufeng, Bian, Zuqiang, Huang, Chunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrathin polythiophene films prepared via electrochemical polymerization is successfully used as the hole-transporting material, substituting conventional HTM-PEDOT:PSS, in planar p-i-n CH3NH3PbI3 perovskite-based solar cells, affording a series of ITO/polythiophene/CH3NHBPbIB/C60/BCP/Ag devices. The ultrathin polythiophene film possesses good transmittance, high conductivity, a smooth surface, high wettability, compatibility with PbI2 DMF solution, and an energy level matching that of the CH3NH3PbI3 perovskite material. A promising power conversion efficiency of about 15.4%, featuring a high fill factor of 0.774, open voltage of 0.99 V, and short-circuit current density of 20.3 mA·cm^-2 is obtained. The overall performance of the devices is superior to that of cells using PEDOT:PSS. The differences of solar cells with different hole-transfer materials in charge recombination, charge transport and transfer, and device stability are further investigated and demonstrate that polythiophene is a more effective and promising hole-transporting material. This work provides a simple, prompt, controllable, and economic approach for the preparation of an effective hole-transporting material, which undoubtedly offers an alternative method in the future industrial production of perovskite solar cells.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-015-0755-5