From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes
We examine the electrochemical gradients that form across chemical garden membranes and investigate how self‐assembling, out‐of‐equilibrium inorganic precipitates—mimicking in some ways those generated in far‐from‐equilibrium natural systems—can generate electrochemical energy. Measurements of elect...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2015-07, Vol.127 (28), p.8302-8305 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8305 |
---|---|
container_issue | 28 |
container_start_page | 8302 |
container_title | Angewandte Chemie |
container_volume | 127 |
creator | Barge, Laura M. Abedian, Yeghegis Russell, Michael J. Doloboff, Ivria J. Cartwright, Julyan H. E. Kidd, Richard D. Kanik, Isik |
description | We examine the electrochemical gradients that form across chemical garden membranes and investigate how self‐assembling, out‐of‐equilibrium inorganic precipitates—mimicking in some ways those generated in far‐from‐equilibrium natural systems—can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron‐sulfide and iron‐hydroxide reaction systems. The battery‐like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light‐emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self‐organizing chemical systems.
Chemische Gärten: Selbstorganisierte Membranen in Eisensulfid‐ und Eisenhydroxid‐Reaktionssystemen wurden untersucht. Das durch das Ausfällen der anorganischen Membranen erzeugte elektrische Potential und der Strom wurden gemessen. Die batterieähnlichen Eigenschaften der chemischen Gärten konnten durch die serielle Schaltung mehrerer Experimente demonstriert werden, die genügend elektrischen Strom erzeugten, um eine Leuchtdiode zu betreiben. |
doi_str_mv | 10.1002/ange.201501663 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744677145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744677145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3393-5bc24e32e0ae8b5f47c98733b57dde349e738482919b6f627283043e0115fc0e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EEkPplrUlNmwy-BnH7IZoJi2atoiCurSczE1xcZzWTgRd8s_xdFCF2HTlh865up8-hN5QsqSEsPc2XMOSESoJLUv-DC2oZLTgSqrnaEGIEEXFhH6JXqV0QwgpmdIL9HsTxwHX32FwnfW4sXEHIeFpxJsZPK7B-_QBNxAg2smNAY89XnvopvjAfx4nCJPLNxt2uJ5jzE-86uKYEr4E3xerlGBovQvX-DRm_8ztR3l8ln-jDZBeoxe99QmO_55H6Ntm_bU-KbYXzWm92hYd55oXsu2YAM6AWKha2QvV6Upx3kq12wEXGhSvRMU01W3Z53Cs4kRwIJTKviPAj9C7w9zbON7NkCYzuNTlfHmJcU6GKiFKpaiQGX37H3ozzjHk7QwtNSOyZFJkanmgHtJG6M1tdION94YSs2_E7Bsxj41kQR-En87D_RO0WZ0363_d4uC6NMGvR9fGH6ZUuWNzdd4Y9eXq5OOWfDIN_wPPTZ3x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692056254</pqid></control><display><type>article</type><title>From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Barge, Laura M. ; Abedian, Yeghegis ; Russell, Michael J. ; Doloboff, Ivria J. ; Cartwright, Julyan H. E. ; Kidd, Richard D. ; Kanik, Isik</creator><creatorcontrib>Barge, Laura M. ; Abedian, Yeghegis ; Russell, Michael J. ; Doloboff, Ivria J. ; Cartwright, Julyan H. E. ; Kidd, Richard D. ; Kanik, Isik</creatorcontrib><description>We examine the electrochemical gradients that form across chemical garden membranes and investigate how self‐assembling, out‐of‐equilibrium inorganic precipitates—mimicking in some ways those generated in far‐from‐equilibrium natural systems—can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron‐sulfide and iron‐hydroxide reaction systems. The battery‐like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light‐emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self‐organizing chemical systems.
Chemische Gärten: Selbstorganisierte Membranen in Eisensulfid‐ und Eisenhydroxid‐Reaktionssystemen wurden untersucht. Das durch das Ausfällen der anorganischen Membranen erzeugte elektrische Potential und der Strom wurden gemessen. Die batterieähnlichen Eigenschaften der chemischen Gärten konnten durch die serielle Schaltung mehrerer Experimente demonstriert werden, die genügend elektrischen Strom erzeugten, um eine Leuchtdiode zu betreiben.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201501663</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Anorganische Membranen ; Austenitic stainless steels ; Chemische Gärten ; Chemistry ; Eisensulfid ; Electric potential ; Fuel cells ; Gardens ; Hydrothermale Schlote ; Iron ; Light-emitting diodes ; Membranes ; Membranpotentiale ; Precipitates ; Precipitation</subject><ispartof>Angewandte Chemie, 2015-07, Vol.127 (28), p.8302-8305</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3393-5bc24e32e0ae8b5f47c98733b57dde349e738482919b6f627283043e0115fc0e3</citedby><cites>FETCH-LOGICAL-c3393-5bc24e32e0ae8b5f47c98733b57dde349e738482919b6f627283043e0115fc0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.201501663$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.201501663$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Barge, Laura M.</creatorcontrib><creatorcontrib>Abedian, Yeghegis</creatorcontrib><creatorcontrib>Russell, Michael J.</creatorcontrib><creatorcontrib>Doloboff, Ivria J.</creatorcontrib><creatorcontrib>Cartwright, Julyan H. E.</creatorcontrib><creatorcontrib>Kidd, Richard D.</creatorcontrib><creatorcontrib>Kanik, Isik</creatorcontrib><title>From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes</title><title>Angewandte Chemie</title><addtitle>Angew. Chem</addtitle><description>We examine the electrochemical gradients that form across chemical garden membranes and investigate how self‐assembling, out‐of‐equilibrium inorganic precipitates—mimicking in some ways those generated in far‐from‐equilibrium natural systems—can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron‐sulfide and iron‐hydroxide reaction systems. The battery‐like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light‐emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self‐organizing chemical systems.
Chemische Gärten: Selbstorganisierte Membranen in Eisensulfid‐ und Eisenhydroxid‐Reaktionssystemen wurden untersucht. Das durch das Ausfällen der anorganischen Membranen erzeugte elektrische Potential und der Strom wurden gemessen. Die batterieähnlichen Eigenschaften der chemischen Gärten konnten durch die serielle Schaltung mehrerer Experimente demonstriert werden, die genügend elektrischen Strom erzeugten, um eine Leuchtdiode zu betreiben.</description><subject>Anorganische Membranen</subject><subject>Austenitic stainless steels</subject><subject>Chemische Gärten</subject><subject>Chemistry</subject><subject>Eisensulfid</subject><subject>Electric potential</subject><subject>Fuel cells</subject><subject>Gardens</subject><subject>Hydrothermale Schlote</subject><subject>Iron</subject><subject>Light-emitting diodes</subject><subject>Membranes</subject><subject>Membranpotentiale</subject><subject>Precipitates</subject><subject>Precipitation</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAURi0EEkPplrUlNmwy-BnH7IZoJi2atoiCurSczE1xcZzWTgRd8s_xdFCF2HTlh865up8-hN5QsqSEsPc2XMOSESoJLUv-DC2oZLTgSqrnaEGIEEXFhH6JXqV0QwgpmdIL9HsTxwHX32FwnfW4sXEHIeFpxJsZPK7B-_QBNxAg2smNAY89XnvopvjAfx4nCJPLNxt2uJ5jzE-86uKYEr4E3xerlGBovQvX-DRm_8ztR3l8ln-jDZBeoxe99QmO_55H6Ntm_bU-KbYXzWm92hYd55oXsu2YAM6AWKha2QvV6Upx3kq12wEXGhSvRMU01W3Z53Cs4kRwIJTKviPAj9C7w9zbON7NkCYzuNTlfHmJcU6GKiFKpaiQGX37H3ozzjHk7QwtNSOyZFJkanmgHtJG6M1tdION94YSs2_E7Bsxj41kQR-En87D_RO0WZ0363_d4uC6NMGvR9fGH6ZUuWNzdd4Y9eXq5OOWfDIN_wPPTZ3x</recordid><startdate>20150706</startdate><enddate>20150706</enddate><creator>Barge, Laura M.</creator><creator>Abedian, Yeghegis</creator><creator>Russell, Michael J.</creator><creator>Doloboff, Ivria J.</creator><creator>Cartwright, Julyan H. E.</creator><creator>Kidd, Richard D.</creator><creator>Kanik, Isik</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope></search><sort><creationdate>20150706</creationdate><title>From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes</title><author>Barge, Laura M. ; Abedian, Yeghegis ; Russell, Michael J. ; Doloboff, Ivria J. ; Cartwright, Julyan H. E. ; Kidd, Richard D. ; Kanik, Isik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3393-5bc24e32e0ae8b5f47c98733b57dde349e738482919b6f627283043e0115fc0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anorganische Membranen</topic><topic>Austenitic stainless steels</topic><topic>Chemische Gärten</topic><topic>Chemistry</topic><topic>Eisensulfid</topic><topic>Electric potential</topic><topic>Fuel cells</topic><topic>Gardens</topic><topic>Hydrothermale Schlote</topic><topic>Iron</topic><topic>Light-emitting diodes</topic><topic>Membranes</topic><topic>Membranpotentiale</topic><topic>Precipitates</topic><topic>Precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barge, Laura M.</creatorcontrib><creatorcontrib>Abedian, Yeghegis</creatorcontrib><creatorcontrib>Russell, Michael J.</creatorcontrib><creatorcontrib>Doloboff, Ivria J.</creatorcontrib><creatorcontrib>Cartwright, Julyan H. E.</creatorcontrib><creatorcontrib>Kidd, Richard D.</creatorcontrib><creatorcontrib>Kanik, Isik</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barge, Laura M.</au><au>Abedian, Yeghegis</au><au>Russell, Michael J.</au><au>Doloboff, Ivria J.</au><au>Cartwright, Julyan H. E.</au><au>Kidd, Richard D.</au><au>Kanik, Isik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes</atitle><jtitle>Angewandte Chemie</jtitle><addtitle>Angew. Chem</addtitle><date>2015-07-06</date><risdate>2015</risdate><volume>127</volume><issue>28</issue><spage>8302</spage><epage>8305</epage><pages>8302-8305</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>We examine the electrochemical gradients that form across chemical garden membranes and investigate how self‐assembling, out‐of‐equilibrium inorganic precipitates—mimicking in some ways those generated in far‐from‐equilibrium natural systems—can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron‐sulfide and iron‐hydroxide reaction systems. The battery‐like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light‐emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self‐organizing chemical systems.
Chemische Gärten: Selbstorganisierte Membranen in Eisensulfid‐ und Eisenhydroxid‐Reaktionssystemen wurden untersucht. Das durch das Ausfällen der anorganischen Membranen erzeugte elektrische Potential und der Strom wurden gemessen. Die batterieähnlichen Eigenschaften der chemischen Gärten konnten durch die serielle Schaltung mehrerer Experimente demonstriert werden, die genügend elektrischen Strom erzeugten, um eine Leuchtdiode zu betreiben.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ange.201501663</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2015-07, Vol.127 (28), p.8302-8305 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744677145 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anorganische Membranen Austenitic stainless steels Chemische Gärten Chemistry Eisensulfid Electric potential Fuel cells Gardens Hydrothermale Schlote Iron Light-emitting diodes Membranes Membranpotentiale Precipitates Precipitation |
title | From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Chemical%20Gardens%20to%20Fuel%20Cells:%20Generation%20of%20Electrical%20Potential%20and%20Current%20Across%20Self-Assembling%20Iron%20Mineral%20Membranes&rft.jtitle=Angewandte%20Chemie&rft.au=Barge,%20Laura%20M.&rft.date=2015-07-06&rft.volume=127&rft.issue=28&rft.spage=8302&rft.epage=8305&rft.pages=8302-8305&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201501663&rft_dat=%3Cproquest_cross%3E1744677145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692056254&rft_id=info:pmid/&rfr_iscdi=true |