From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes

We examine the electrochemical gradients that form across chemical garden membranes and investigate how self‐assembling, out‐of‐equilibrium inorganic precipitates—mimicking in some ways those generated in far‐from‐equilibrium natural systems—can generate electrochemical energy. Measurements of elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2015-07, Vol.127 (28), p.8302-8305
Hauptverfasser: Barge, Laura M., Abedian, Yeghegis, Russell, Michael J., Doloboff, Ivria J., Cartwright, Julyan H. E., Kidd, Richard D., Kanik, Isik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8305
container_issue 28
container_start_page 8302
container_title Angewandte Chemie
container_volume 127
creator Barge, Laura M.
Abedian, Yeghegis
Russell, Michael J.
Doloboff, Ivria J.
Cartwright, Julyan H. E.
Kidd, Richard D.
Kanik, Isik
description We examine the electrochemical gradients that form across chemical garden membranes and investigate how self‐assembling, out‐of‐equilibrium inorganic precipitates—mimicking in some ways those generated in far‐from‐equilibrium natural systems—can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron‐sulfide and iron‐hydroxide reaction systems. The battery‐like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light‐emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self‐organizing chemical systems. Chemische Gärten: Selbstorganisierte Membranen in Eisensulfid‐ und Eisenhydroxid‐Reaktionssystemen wurden untersucht. Das durch das Ausfällen der anorganischen Membranen erzeugte elektrische Potential und der Strom wurden gemessen. Die batterieähnlichen Eigenschaften der chemischen Gärten konnten durch die serielle Schaltung mehrerer Experimente demonstriert werden, die genügend elektrischen Strom erzeugten, um eine Leuchtdiode zu betreiben.
doi_str_mv 10.1002/ange.201501663
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744677145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744677145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3393-5bc24e32e0ae8b5f47c98733b57dde349e738482919b6f627283043e0115fc0e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EEkPplrUlNmwy-BnH7IZoJi2atoiCurSczE1xcZzWTgRd8s_xdFCF2HTlh865up8-hN5QsqSEsPc2XMOSESoJLUv-DC2oZLTgSqrnaEGIEEXFhH6JXqV0QwgpmdIL9HsTxwHX32FwnfW4sXEHIeFpxJsZPK7B-_QBNxAg2smNAY89XnvopvjAfx4nCJPLNxt2uJ5jzE-86uKYEr4E3xerlGBovQvX-DRm_8ztR3l8ln-jDZBeoxe99QmO_55H6Ntm_bU-KbYXzWm92hYd55oXsu2YAM6AWKha2QvV6Upx3kq12wEXGhSvRMU01W3Z53Cs4kRwIJTKviPAj9C7w9zbON7NkCYzuNTlfHmJcU6GKiFKpaiQGX37H3ozzjHk7QwtNSOyZFJkanmgHtJG6M1tdION94YSs2_E7Bsxj41kQR-En87D_RO0WZ0363_d4uC6NMGvR9fGH6ZUuWNzdd4Y9eXq5OOWfDIN_wPPTZ3x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692056254</pqid></control><display><type>article</type><title>From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Barge, Laura M. ; Abedian, Yeghegis ; Russell, Michael J. ; Doloboff, Ivria J. ; Cartwright, Julyan H. E. ; Kidd, Richard D. ; Kanik, Isik</creator><creatorcontrib>Barge, Laura M. ; Abedian, Yeghegis ; Russell, Michael J. ; Doloboff, Ivria J. ; Cartwright, Julyan H. E. ; Kidd, Richard D. ; Kanik, Isik</creatorcontrib><description>We examine the electrochemical gradients that form across chemical garden membranes and investigate how self‐assembling, out‐of‐equilibrium inorganic precipitates—mimicking in some ways those generated in far‐from‐equilibrium natural systems—can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron‐sulfide and iron‐hydroxide reaction systems. The battery‐like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light‐emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self‐organizing chemical systems. Chemische Gärten: Selbstorganisierte Membranen in Eisensulfid‐ und Eisenhydroxid‐Reaktionssystemen wurden untersucht. Das durch das Ausfällen der anorganischen Membranen erzeugte elektrische Potential und der Strom wurden gemessen. Die batterieähnlichen Eigenschaften der chemischen Gärten konnten durch die serielle Schaltung mehrerer Experimente demonstriert werden, die genügend elektrischen Strom erzeugten, um eine Leuchtdiode zu betreiben.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201501663</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Anorganische Membranen ; Austenitic stainless steels ; Chemische Gärten ; Chemistry ; Eisensulfid ; Electric potential ; Fuel cells ; Gardens ; Hydrothermale Schlote ; Iron ; Light-emitting diodes ; Membranes ; Membranpotentiale ; Precipitates ; Precipitation</subject><ispartof>Angewandte Chemie, 2015-07, Vol.127 (28), p.8302-8305</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3393-5bc24e32e0ae8b5f47c98733b57dde349e738482919b6f627283043e0115fc0e3</citedby><cites>FETCH-LOGICAL-c3393-5bc24e32e0ae8b5f47c98733b57dde349e738482919b6f627283043e0115fc0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.201501663$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.201501663$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Barge, Laura M.</creatorcontrib><creatorcontrib>Abedian, Yeghegis</creatorcontrib><creatorcontrib>Russell, Michael J.</creatorcontrib><creatorcontrib>Doloboff, Ivria J.</creatorcontrib><creatorcontrib>Cartwright, Julyan H. E.</creatorcontrib><creatorcontrib>Kidd, Richard D.</creatorcontrib><creatorcontrib>Kanik, Isik</creatorcontrib><title>From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes</title><title>Angewandte Chemie</title><addtitle>Angew. Chem</addtitle><description>We examine the electrochemical gradients that form across chemical garden membranes and investigate how self‐assembling, out‐of‐equilibrium inorganic precipitates—mimicking in some ways those generated in far‐from‐equilibrium natural systems—can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron‐sulfide and iron‐hydroxide reaction systems. The battery‐like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light‐emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self‐organizing chemical systems. Chemische Gärten: Selbstorganisierte Membranen in Eisensulfid‐ und Eisenhydroxid‐Reaktionssystemen wurden untersucht. Das durch das Ausfällen der anorganischen Membranen erzeugte elektrische Potential und der Strom wurden gemessen. Die batterieähnlichen Eigenschaften der chemischen Gärten konnten durch die serielle Schaltung mehrerer Experimente demonstriert werden, die genügend elektrischen Strom erzeugten, um eine Leuchtdiode zu betreiben.</description><subject>Anorganische Membranen</subject><subject>Austenitic stainless steels</subject><subject>Chemische Gärten</subject><subject>Chemistry</subject><subject>Eisensulfid</subject><subject>Electric potential</subject><subject>Fuel cells</subject><subject>Gardens</subject><subject>Hydrothermale Schlote</subject><subject>Iron</subject><subject>Light-emitting diodes</subject><subject>Membranes</subject><subject>Membranpotentiale</subject><subject>Precipitates</subject><subject>Precipitation</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAURi0EEkPplrUlNmwy-BnH7IZoJi2atoiCurSczE1xcZzWTgRd8s_xdFCF2HTlh865up8-hN5QsqSEsPc2XMOSESoJLUv-DC2oZLTgSqrnaEGIEEXFhH6JXqV0QwgpmdIL9HsTxwHX32FwnfW4sXEHIeFpxJsZPK7B-_QBNxAg2smNAY89XnvopvjAfx4nCJPLNxt2uJ5jzE-86uKYEr4E3xerlGBovQvX-DRm_8ztR3l8ln-jDZBeoxe99QmO_55H6Ntm_bU-KbYXzWm92hYd55oXsu2YAM6AWKha2QvV6Upx3kq12wEXGhSvRMU01W3Z53Cs4kRwIJTKviPAj9C7w9zbON7NkCYzuNTlfHmJcU6GKiFKpaiQGX37H3ozzjHk7QwtNSOyZFJkanmgHtJG6M1tdION94YSs2_E7Bsxj41kQR-En87D_RO0WZ0363_d4uC6NMGvR9fGH6ZUuWNzdd4Y9eXq5OOWfDIN_wPPTZ3x</recordid><startdate>20150706</startdate><enddate>20150706</enddate><creator>Barge, Laura M.</creator><creator>Abedian, Yeghegis</creator><creator>Russell, Michael J.</creator><creator>Doloboff, Ivria J.</creator><creator>Cartwright, Julyan H. E.</creator><creator>Kidd, Richard D.</creator><creator>Kanik, Isik</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope></search><sort><creationdate>20150706</creationdate><title>From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes</title><author>Barge, Laura M. ; Abedian, Yeghegis ; Russell, Michael J. ; Doloboff, Ivria J. ; Cartwright, Julyan H. E. ; Kidd, Richard D. ; Kanik, Isik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3393-5bc24e32e0ae8b5f47c98733b57dde349e738482919b6f627283043e0115fc0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anorganische Membranen</topic><topic>Austenitic stainless steels</topic><topic>Chemische Gärten</topic><topic>Chemistry</topic><topic>Eisensulfid</topic><topic>Electric potential</topic><topic>Fuel cells</topic><topic>Gardens</topic><topic>Hydrothermale Schlote</topic><topic>Iron</topic><topic>Light-emitting diodes</topic><topic>Membranes</topic><topic>Membranpotentiale</topic><topic>Precipitates</topic><topic>Precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barge, Laura M.</creatorcontrib><creatorcontrib>Abedian, Yeghegis</creatorcontrib><creatorcontrib>Russell, Michael J.</creatorcontrib><creatorcontrib>Doloboff, Ivria J.</creatorcontrib><creatorcontrib>Cartwright, Julyan H. E.</creatorcontrib><creatorcontrib>Kidd, Richard D.</creatorcontrib><creatorcontrib>Kanik, Isik</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barge, Laura M.</au><au>Abedian, Yeghegis</au><au>Russell, Michael J.</au><au>Doloboff, Ivria J.</au><au>Cartwright, Julyan H. E.</au><au>Kidd, Richard D.</au><au>Kanik, Isik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes</atitle><jtitle>Angewandte Chemie</jtitle><addtitle>Angew. Chem</addtitle><date>2015-07-06</date><risdate>2015</risdate><volume>127</volume><issue>28</issue><spage>8302</spage><epage>8305</epage><pages>8302-8305</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>We examine the electrochemical gradients that form across chemical garden membranes and investigate how self‐assembling, out‐of‐equilibrium inorganic precipitates—mimicking in some ways those generated in far‐from‐equilibrium natural systems—can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron‐sulfide and iron‐hydroxide reaction systems. The battery‐like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light‐emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self‐organizing chemical systems. Chemische Gärten: Selbstorganisierte Membranen in Eisensulfid‐ und Eisenhydroxid‐Reaktionssystemen wurden untersucht. Das durch das Ausfällen der anorganischen Membranen erzeugte elektrische Potential und der Strom wurden gemessen. Die batterieähnlichen Eigenschaften der chemischen Gärten konnten durch die serielle Schaltung mehrerer Experimente demonstriert werden, die genügend elektrischen Strom erzeugten, um eine Leuchtdiode zu betreiben.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ange.201501663</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2015-07, Vol.127 (28), p.8302-8305
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_miscellaneous_1744677145
source Wiley Online Library Journals Frontfile Complete
subjects Anorganische Membranen
Austenitic stainless steels
Chemische Gärten
Chemistry
Eisensulfid
Electric potential
Fuel cells
Gardens
Hydrothermale Schlote
Iron
Light-emitting diodes
Membranes
Membranpotentiale
Precipitates
Precipitation
title From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Chemical%20Gardens%20to%20Fuel%20Cells:%20Generation%20of%20Electrical%20Potential%20and%20Current%20Across%20Self-Assembling%20Iron%20Mineral%20Membranes&rft.jtitle=Angewandte%20Chemie&rft.au=Barge,%20Laura%20M.&rft.date=2015-07-06&rft.volume=127&rft.issue=28&rft.spage=8302&rft.epage=8305&rft.pages=8302-8305&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201501663&rft_dat=%3Cproquest_cross%3E1744677145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692056254&rft_id=info:pmid/&rfr_iscdi=true