Nonequilibrium is different
Nonequilibrium and equilibrium fluid systems differ due to the existence of long-range correlations in nonequilibrium that are not present in equilibrium, except at critical points. Here we examine fluctuations of the temperature, of the pressure tensor, and of the heat current in a fluid maintained...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-08, Vol.92 (2), p.022109-022109, Article 022109 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonequilibrium and equilibrium fluid systems differ due to the existence of long-range correlations in nonequilibrium that are not present in equilibrium, except at critical points. Here we examine fluctuations of the temperature, of the pressure tensor, and of the heat current in a fluid maintained in a nonequilibrium stationary state (NESS) with a fixed temperature gradient, a system in which the nonequilibrium correlations are especially long-ranged. For this particular NESS, our results show that (i) the mean-squared fluctuations in nonequilibrium differ markedly in their system-size scaling compared to their equilibrium counterparts, and (ii) there are large, nonlocal correlations of the normal stress in this NESS. These terms provide important corrections to the fluctuating normal stress in linearized Landau-Lifshitz fluctuating hydrodynamics. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.92.022109 |