The potential of three native insect predators to control the rosy apple aphid, Dysaphis plantaginea
The potential of three aphidophagous predators, Adalia bipunctata, Aphidoletes aphidimyza, and Episyrphus balteatus to control the rosy apple aphid, Dysaphis plantaginea Pass., a major pest on apple in Europe, was assessed by means of laboratory and field cage experiments in Northern Switzerland. Un...
Gespeichert in:
Veröffentlicht in: | BioControl (Dordrecht, Netherlands) Netherlands), 1999-01, Vol.44 (2), p.171-182 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The potential of three aphidophagous predators, Adalia bipunctata, Aphidoletes aphidimyza, and Episyrphus balteatus to control the rosy apple aphid, Dysaphis plantaginea Pass., a major pest on apple in Europe, was assessed by means of laboratory and field cage experiments in Northern Switzerland. Under laboratory conditions, all three predators efficiently preyed upon D. plantaginea on apple seedlings. The searching success of larvae of A. bipunctata for individual aphids was not dependent on the size of branches of apple trees varying in leaf surface area from 150 cm2 to 960 cm2. Fifty and 70% of individual aphids were found and killed 6 hours and 48 hours, respectively, after release of single second instar larva of A. bipunctata. In a first field cage experiment in 1996, A. bipunctata, and to a lesser extent E. balteatus, proved to be effective and consistent predators of D. plantaginea during spring conditions, being little affected by cool temperatures and wet weather. In a subsequent field cage experiment in 1997, larvae of A. bipunctata and E. balteatus were released singly and in combination on aphid infested apple seedlings to study interactions between these two promising control agents. Both species had a significant negative effect on aphid population increase. The two species did not significantly interact and thus, their joint effect is best explained by an additive model. Combined releases of the two predator species reduced aphid densities to 5% of the control. This indicates the potential for augmentative releases of these native aphid predators to control D. plantaginea. |
---|---|
ISSN: | 1386-6141 1573-8248 |
DOI: | 10.1023/A:1009934214927 |