Arsenic contamination of groundwater in nawabganj, bangladesh, focusing on the relationship with other metals and ions
Serious arsenic contamination of groundwater in Bangladesh has been frequently reported and is of great concern. In this research, repeated water sampling from the same 10 tubewells in Nawabganj municipality, Bangladesh, was conducted and analysed, focusing on the seasonal variation of water quality...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2005-01, Vol.52 (8), p.87-94 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Serious arsenic contamination of groundwater in Bangladesh has been frequently reported and is of great concern. In this research, repeated water sampling from the same 10 tubewells in Nawabganj municipality, Bangladesh, was conducted and analysed, focusing on the seasonal variation of water quality and the relationship among arsenic and other metals and ions. For the seasonal variation of water quality, arsenic and iron concentrations were higher in the rainy season in general although the tendency was not consistent and it depended on the tubewell and the time. Correlation between arsenic and iron could not be observed in this study (r = -0.01) when using all cases. This was because no correlation was observed in the higher arsenic concentration range. Arsenic removal by co-precipitation with coexisting iron is known as one of the locally applicable techniques in Bangladesh, but the result from this study suggests that some additional treatments such as the extra injection of iron should be performed in some cases, especially where the arsenic concentration is high. The correlation between arsenic and other substances was also analysed. As a result, manganese (r = 0.37), molybdenum (r = 0.33) and sulfate ion (r = -0.33) significantly correlated with arsenic (p < 0.05). The negative correlation between arsenic and sulfate ion implies the dissolution of arsenic into groundwater under reductive conditions although there are some exceptional cases. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2005.0233 |