Fabrication and Endothelialization of Collagen-Blended Biodegradable Polymer Nanofibers: Potential Vascular Graft for Blood Vessel Tissue Engineering

Electrospun collagen-blended poly(L-lactic acid)- co -poly(∈-caprolactone) [P(LLA-CL), 70:30] nanofiber may have great potential application in tissue engineering because it mimicks the extracellular matrix (ECM) both morphologically and chemically. Blended nanofibers with various weight ratios of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering 2005-09, Vol.11 (9-10), p.1574-1588
Hauptverfasser: He, Wei, Yong, Thomas, Teo, Wee Eong, Ma, Zuwei, Ramakrishna, Seeram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrospun collagen-blended poly(L-lactic acid)- co -poly(∈-caprolactone) [P(LLA-CL), 70:30] nanofiber may have great potential application in tissue engineering because it mimicks the extracellular matrix (ECM) both morphologically and chemically. Blended nanofibers with various weight ratios of polymer to collagen were fabricated by electrospinning. The appearance of the blended nanofibers was investigated by scanning electron microscopy and transmission electron microscopy. The nanofibers exhibited a smooth surface and a narrow diameter distribution, with 60% of the nanofibers having diameters between 100 and 200 nm. Attenuated total reflectance-Fourier transform infrared spectra and X-ray photoelectron spectroscopy verified the existence of collagen molecules on the surface of nanofibers. Human coronary artery endothelial cells (HCAECs) were seeded onto the blended nanofibers for viability, morphogenesis, attachment, and phenotypic studies. Five characteristic endothelial cell (EC) markers, including four types of cell adhesion molecule and one EC-preferential gene (von Willebrand factor), were studied by reverse transcription-polymerase chain reaction. Results showed that the collagen-blended polymer nanofibers could enhance the viability, spreading, and attachment of HCAECs and, moreover, preserve the EC phenotype. The blending electrospinning technique shows potential in refining the composition of polymer nanofibers by adding various ingredients (e.g., growth factors) according to cell types to fabricate tissue-engineering scaffold, particularly blood vessel-engineering scaffold.
ISSN:1076-3279
1557-8690
DOI:10.1089/ten.2005.11.1574