Spirulina cultivation with a CO2 absorbent: Influence on growth parameters and macromolecule production

•Increase in MEA concentration, there was also an increase in Spirulina growth rate.•MEA concentrations selected were 0.10, 0.20 and 0.41mmolL−1 (0.13gMEAgbiomass−1).•The MEA addition increased the protein concentration in biomass Spirulina. The objective of this study was to select a concentration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2016-01, Vol.200, p.528-534
Hauptverfasser: Rosa, Gabriel Martins da, Moraes, Luiza, de Souza, Michele da Rosa Andrade Zimmermann, Costa, Jorge Alberto Vieira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Increase in MEA concentration, there was also an increase in Spirulina growth rate.•MEA concentrations selected were 0.10, 0.20 and 0.41mmolL−1 (0.13gMEAgbiomass−1).•The MEA addition increased the protein concentration in biomass Spirulina. The objective of this study was to select a concentration of CO2 absorbents to supplement Spirulina sp. LEB 18 cultivation and to evaluate the effect of these compounds on the growth and production of macromolecules. Three initial biomass concentrations (X0), eight concentrations of monoethanolamine (MEA), and three NaOH concentrations were tested. The selected MEA concentrations did not inhibit the growth of Spirulina and doubled the dissolved inorganic carbon concentration in the assay medium in relation to the concentration of NaOH. The protein concentration in the biomass grown with MEA was, on average, 17% higher than that obtained with NaOH. Thus, it was found that MEA did not reduce the productivity of Spirulina sp. LEB 18, and its use can be further explored as a means for converting the carbon dissolved in the medium to biomolecules.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2015.10.025