Cervical Interfacial Bonding Effectiveness of Class II Bulk Versus Incremental Fill Resin Composite Restorations

Cervical interfacial bonding quality has been a matter of deep concern. The purpose of this study was to analyze microtensile bond strength (MTBS) and cervical interfacial gap distance (IGD) of bulk-fill vs incremental-fill Class II composite restorations. Box-only Class II cavities were prepared in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operative dentistry 2015-11, Vol.40 (6), p.622-635
Hauptverfasser: Al-Harbi, F, Kaisarly, D, Michna, A, ArRejaie, A, Bader, D, El Gezawi, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cervical interfacial bonding quality has been a matter of deep concern. The purpose of this study was to analyze microtensile bond strength (MTBS) and cervical interfacial gap distance (IGD) of bulk-fill vs incremental-fill Class II composite restorations. Box-only Class II cavities were prepared in 91 maxillary premolars (n = 7) with gingival margin placement 1 mm above the cementoenamel junction at one side and 1 mm below it on the other side. Eighty-four maxillary premolars were divided into self-etch and total-etch groups and further subdivided into six restorative material subgroups used incrementally and with an open-sandwich technique: group 1, Tetric Ceram HB (TC) as a control; group 2, Tetric EvoFlow (EF); group 3, SDR Smart Dentin Replacement (SDR); group 4, SonicFill (SF); group 5, Tetric N-Ceram Bulk Fill (TN); and group 6, Tetric EvoCeram Bulk Fill (TE). Groups 2-6 were bulk-fill restoratives. Tetric N-Bond Self-Etch (se) and Tetric N-Bond total-etch (te) adhesive were used in subgroups 1-5, whereas AdheSE (se) and ExciTE F (te) were used in subgroup 6. In an additional group, Filtek P90 Low Shrink Restorative (P90) was used only with its corresponding self-etch bond. The materials were manipulated, light-cured (1600 mW/cm(2)), artificially aged (thermal and occlusal load-cycling), and sectioned. Two microrods/restoration (n = 14/group) were tested for MTBS at a crosshead-speed of 0.5 mm/min (Instron testing machine). Fracture loads were recorded (Newtons), and MTSBs were calculated (Megapascals). Means were statistically analyzed by the Kruskal-Wallis test, Conover-Inman post hoc analysis for MTBS (multiple comparisons), and Mann-Whitney U test for IGD. The ends of the fractures were examined for failure mode. One microrod/restoration (n = 7/group) was investigated by scanning electron microscopy (×1200) for IGD. MTBS values for SF/te, P90 in enamel, and TC+SDR/te in enamel and cementum were significantly higher compared with those for the control TC/te and TC/se in cementum. Most of the failures were mixed. IGDs were generally smaller at enamel margins, and the smallest IGDs were found in P90 at both enamel and cementum margins. Bulk-fill and silorane-based composites might provide better cervical interfacial quality than incremental-fill restorations.
ISSN:0361-7734
1559-2863
DOI:10.2341/14-152-l