Vertical modelling: Analysis of competing risks data with missing causes of failure

We propose vertical modelling as a natural approach to the problem of analysis of competing risks data when failure types are missing for some individuals. Under a natural missing-at-random assumption for these missing failure types, we use the observed data likelihood to estimate its parameters and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2015-12, Vol.24 (6), p.891-908
Hauptverfasser: Nicolaie, MA, van Houwelingen, HC, Putter, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose vertical modelling as a natural approach to the problem of analysis of competing risks data when failure types are missing for some individuals. Under a natural missing-at-random assumption for these missing failure types, we use the observed data likelihood to estimate its parameters and show that the all-cause hazard and the relative hazards appearing in vertical modelling are indeed key quantities of this likelihood. This fact has practical implications in that it suggests vertical modelling as a simple and attractive method of analysis in competing risks with missing causes of failure; all individuals are used in estimating the all-cause hazard and only those with non-missing cause of failure for relative hazards. The relative hazards also appear in a multiple imputation approach to the same problem proposed by Lu and Tsiatis and in the EM algorithm. We compare the vertical modelling approach with the method of Goetghebeur and Ryan for a breast cancer data set, highlighting the different aspects they contribute to the data analysis.
ISSN:0962-2802
1477-0334
DOI:10.1177/0962280211432067