Modelling a visual discrimination task
We study the performance of a spiking network model based on integrate-and-fire neurons when performing a benchmark discrimination task. The task consists of determining the direction of moving dots in a noisy context. By varying the synaptic parameters of the integrate-and-fire neurons, we illustra...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2005-06, Vol.65, p.203-209 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the performance of a spiking network model based on integrate-and-fire neurons when performing a benchmark discrimination task. The task consists of determining the direction of moving dots in a noisy context. By varying the synaptic parameters of the integrate-and-fire neurons, we illustrate the counter-intuitive importance of the second-order statistics (input noise) in improving the discrimination accuracy of the model. Surprisingly, we found that measuring the firing rate (FR) of a population of neurons considerably enhances the discrimination accuracy as well, in comparison with the firing rate of a single neuron. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/j.neucom.2004.10.008 |