Modelling a visual discrimination task

We study the performance of a spiking network model based on integrate-and-fire neurons when performing a benchmark discrimination task. The task consists of determining the direction of moving dots in a noisy context. By varying the synaptic parameters of the integrate-and-fire neurons, we illustra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2005-06, Vol.65, p.203-209
Hauptverfasser: Gaillard, B., Feng, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the performance of a spiking network model based on integrate-and-fire neurons when performing a benchmark discrimination task. The task consists of determining the direction of moving dots in a noisy context. By varying the synaptic parameters of the integrate-and-fire neurons, we illustrate the counter-intuitive importance of the second-order statistics (input noise) in improving the discrimination accuracy of the model. Surprisingly, we found that measuring the firing rate (FR) of a population of neurons considerably enhances the discrimination accuracy as well, in comparison with the firing rate of a single neuron.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2004.10.008