A nonconserved carboxy-terminal segment of GroEL contributes to reaction temperature

The role of the C-terminal segment of the GroEL equatorial domain was analyzed. To understand the molecular basis for the different active temperatures of GroEL from three bacteria, we constructed a series of chimeric GroELs combining the C-terminal segment of the equatorial domain from one species...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2004-12, Vol.68 (12), p.2498-2504
Hauptverfasser: Nakamura, T. (Ibaraki Univ., Ami (Japan). Coll. of Agriculture), Tanaka, M, Maruyama, A, Higashi, Y, Kurusu, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of the C-terminal segment of the GroEL equatorial domain was analyzed. To understand the molecular basis for the different active temperatures of GroEL from three bacteria, we constructed a series of chimeric GroELs combining the C-terminal segment of the equatorial domain from one species with the remainder of GroEL from another. In each case, the foreign C-terminal segment substantially altered the active temperature range of the chimera. Substitution of L524 of Escherichia coli GroEL with the corresponding residue (isoleucine) from psychrophilic GroEL resulted in a GroE with approximately wild-type activity at 25 deg C, but also at 10 deg C, a temperature at which wild type E. coli GroE is inactive. In a detailed look at the temperature dependence of the GroELs, normal E. coli GroEL and the L524I mutant became highly active above 14 deg C and 12 deg C respectively. Similar temperature dependences were observed in a surface plasmon resonance assay of GroES binding. These results suggested that the C-terminal segment of the GroEL equatorial domain has an important role in the temperature dependence of GroEL. Moreover, E. coli acquired the ability to grow at low temperature through the introduction of cold-adapted chimeric or L524I mutant groEL genes.
ISSN:0916-8451
1347-6947
DOI:10.1271/bbb.68.2498