Neural Kalman filter

Anticipating future events is a crucial function of the central nervous system and can be modelled by Kalman filter-like mechanisms, which are optimal for predicting linear dynamical systems. Connectionist representation of such mechanisms with Hebbian learning rules has not yet been derived. We sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2005-06, Vol.65, p.349-355
Hauptverfasser: Szirtes, Gábor, Póczos, Barnabás, Lőrincz, András
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anticipating future events is a crucial function of the central nervous system and can be modelled by Kalman filter-like mechanisms, which are optimal for predicting linear dynamical systems. Connectionist representation of such mechanisms with Hebbian learning rules has not yet been derived. We show that the recursive prediction error method offers a solution that can be mapped onto the entorhinal–hippocampal loop in a biologically plausible way. Model predictions are provided.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2004.10.028