Separating surface emissivity and temperature using two-channel spectral indices and emissivity composites and comparison with a vegetation fraction method

The temperature-independent thermal infrared spectral indices (TISI) method is employed for the separation of land surface temperature (LST) and emissivity from surface radiances (atmospherically corrected satellite data). The daytime reflected solar irradiance and the surface emission at ∼3.8 μm ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2005-05, Vol.96 (1), p.1-17
Hauptverfasser: Dash, Prasanjit, Göttsche, Frank-M., Olesen, Folke-S., Fischer, Herbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The temperature-independent thermal infrared spectral indices (TISI) method is employed for the separation of land surface temperature (LST) and emissivity from surface radiances (atmospherically corrected satellite data). The daytime reflected solar irradiance and the surface emission at ∼3.8 μm have comparable magnitudes. Using surface radiances and a combination of day–night 2-channel TISI ratios, the ∼3.8 μm reflectivity is derived. For implementing the TISI method, coefficients for NOAA 9–16 AVHRR channels are obtained. A numerical analysis with simulated surface radiances shows that for most surface types (showing nearly Lambertian behavior) the achievable accuracy is ∼0.005 for emissivity (AVHRR channel-5) and ∼1.5 K for LST. Data from the European Centre for Medium-Range Weather Forecasts (ECMWF) is used for calculation of atmospheric attenuation. Comparisons are made over a part of central Europe on two different dates (seasons). Clouds pose a major problem to surface observations; hence, monthly emissivity composites are derived. Additionally, using TISI-based monthly composites of emissivities, a normalized difference vegetation index (NDVI)-based method is tuned to the particular study area and the results are intercompared. Once the coefficients are known, the NDVI method is easily implemented but holds well only for vegetated areas. The error of the NDVI-based emissivities (with respect to the TISI results) ranges between −0.038 and 0.032, but for vegetated areas the peak of the error-histogram is at ∼0.002. The algorithm for retrieving emissivity via TISI was validated with synthetic data. Due to the different spatial scales of satellite and surface measurements and the lack of homogeneous areas, which are representative for low-resolution pixels and ground measurements, ground-validation is a daunting task. However, for operational products ground-truth validation is necessary. Therefore, also an approach to identify suitable validation sites for meteorological satellite products in Europe is described.
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2004.12.023