In Situ Observations of Free-Standing Graphene-like Mono- and Bilayer ZnO Membranes

ZnO in its many forms, such as bulk, thin films, nanorods, nanobelts, and quantum dots, attracts significant attention because of its exciting optical, electronic, and magnetic properties. For very thin ZnO films, predictions were made that the bulk wurtzite ZnO structure would transit to a layered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-11, Vol.9 (11), p.11408-11413
Hauptverfasser: Quang, Huy T, Bachmatiuk, Alicja, Dianat, Arezoo, Ortmann, Frank, Zhao, Jiong, Warner, Jamie H, Eckert, Jürgen, Cunniberti, Gianaurelio, Rümmeli, Mark H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ZnO in its many forms, such as bulk, thin films, nanorods, nanobelts, and quantum dots, attracts significant attention because of its exciting optical, electronic, and magnetic properties. For very thin ZnO films, predictions were made that the bulk wurtzite ZnO structure would transit to a layered graphene-like structure. Graphene-like ZnO layers were later confirmed when supported over a metal substrate. However, the existence of free-standing graphene-like ZnO has, to the best of our knowledge, not been demonstrated. In this work, we show experimental evidence for the in situ formation of free-standing graphene-like ZnO mono- and bilayer ZnO membranes suspended in graphene pores. Local electron energy loss spectroscopy confirms the membranes comprise only Zn and O. Image simulations and supporting analysis confirm that the membranes are graphene-like ZnO. Graphene-like ZnO layers are predicted to have a wide band gap and different and exciting properties as compared to other ZnO structures.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b05481