Better P-Curves: Making P-Curve Analysis More Robust To Errors, Fraud, and Ambitious P-Hacking, A Reply To Ulrich and Miller (2015)

When studies examine true effects, they generate right-skewed p-curves, distributions of statistically significant results with more low (.01 s) than high (.04 s) p values. What else can cause a right-skewed p-curve? First, we consider the possibility that researchers report only the smallest signif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental psychology. General 2015-12, Vol.144 (6), p.1146-1152
Hauptverfasser: Simonsohn, Uri, Simmons, Joseph P., Nelson, Leif D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When studies examine true effects, they generate right-skewed p-curves, distributions of statistically significant results with more low (.01 s) than high (.04 s) p values. What else can cause a right-skewed p-curve? First, we consider the possibility that researchers report only the smallest significant p value (as conjectured by Ulrich & Miller, 2015), concluding that it is a very uncommon problem. We then consider more common problems, including (a) p-curvers selecting the wrong p values, (b) fake data, (c) honest errors, and (d) ambitiously p-hacked (beyond p < .05) results. We evaluate the impact of these common problems on the validity of p-curve analysis, and provide practical solutions that substantially increase its robustness.
ISSN:0096-3445
1939-2222
DOI:10.1037/xge0000104