Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application

Nanomaterials serve as promising candidates for strain sensing due to unique electromechanical properties by appropriately assembling and tailoring their configurations. Through the crisscross interlacing of graphene microribbons in an over-and-under fashion, the obtained graphene woven fabric (GWF)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-11, Vol.9 (11), p.10867-10875
Hauptverfasser: Yang, Tingting, Wang, Wen, Zhang, Hongze, Li, Xinming, Shi, Jidong, He, Yijia, Zheng, Quan-shui, Li, Zhihong, Zhu, Hongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanomaterials serve as promising candidates for strain sensing due to unique electromechanical properties by appropriately assembling and tailoring their configurations. Through the crisscross interlacing of graphene microribbons in an over-and-under fashion, the obtained graphene woven fabric (GWF) indicates a good trade-off between sensitivity and stretchability compared with those in previous studies. In this work, the function of woven fabrics for highly sensitive strain sensing is investigated, although network configuration is always a strategy to retain resistance stability. The experimental and simulation results indicate that the ultrahigh mechanosensitivity with gauge factors of 500 under 2% strain is attributed to the macro-woven-fabric geometrical conformation of graphene, which induces a large interfacial resistance between the interlaced ribbons and the formation of microscale-controllable, locally oriented zigzag cracks near the crossover location, both of which have a synergistic effect on improving sensitivity. Meanwhile, the stretchability of the GWF could be tailored to as high as over 40% strain by adjusting graphene growth parameters and adopting oblique angle direction stretching simultaneously. We also demonstrate that sensors based on GWFs are applicable to human motion detection, sound signal acquisition, and spatially resolved monitoring of external stress distribution.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b03851