Degradation of ethylenethiourea (ETU) in oxic and anoxic sandy aquifers
Ethylenethiourea is an important degradation product of ethylenebisdithiocarbamate fungicides, which are widely used in different kinds of crops. The ethylenebisdithiocarbamate group includes maneb, zineb and mancozeb. The ethylenebisdithiocarbamates are not highly toxic and degrade rapidly in the p...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology reviews 1997-07, Vol.20 (3/4), p.539-544 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ethylenethiourea is an important degradation product of ethylenebisdithiocarbamate fungicides, which are widely used in different kinds of crops. The ethylenebisdithiocarbamate group includes maneb, zineb and mancozeb. The ethylenebisdithiocarbamates are not highly toxic and degrade rapidly in the presence of moisture and oxygen, forming different compounds. One of these is the polar ethylenethiourea, which is relatively stable. Thus, this compound appears to be a potential contaminant for groundwater. Batch experiments were carried out under biotic as well as abiotic conditions to study the degradation dependence of concentration. temperature and organic matter. The decomposition of ethylenethiourea under abiotic conditions was found to be less than 5% of the degradation under biotic conditions. Further, ethylenethiourea showed to be stable over a period of 150 days at 20 degrees C in tap water as well as in batch with soil sterilized with NaN3. The degradation of ethylenethiourea depends on the concentration in the water implying first order reaction kinetics. The microbial degradation of ethylenethiourea is highly temperature dependent with aerobic Q10 between 2.9 and 4.2, and an anaerobic between 2.1 and 2.5. A minor increase in degradation rates was observed by application of nitrate and manure to the batches. The experiments show extremely complete degradation of ethylenethiourea in the presence of microbial nitrate reduction with pyrite which occurs in deeper parts of the aquifers. |
---|---|
ISSN: | 0168-6445 1574-6976 1574-6976 |
DOI: | 10.1111/j.1574-6976.1997.tb00336.x |