The Bacillus subtilis ydcDE operon encodes an endoribonuclease of the MazF/PemK family and its inhibitor
Summary Operons encoding stable toxins and their labile antidote are widespread in prokaryotes and play important roles in plasmid partitioning and cellular responses to stress. One such family of toxins MazF/ChpAK/PemK encodes an endoribonuclease that inactivates cellular mRNAs by cleaving them at...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2005-06, Vol.56 (5), p.1139-1148 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Operons encoding stable toxins and their labile antidote are widespread in prokaryotes and play important roles in plasmid partitioning and cellular responses to stress. One such family of toxins MazF/ChpAK/PemK encodes an endoribonuclease that inactivates cellular mRNAs by cleaving them at specific, but frequently occurring sites. Here we show that the Bacillus subtilis ydcE gene encodes a member of this family of RNases, which we have called EndoA. Overexpression of EndoA is toxic for bacterial cell growth and this toxicity is reversed by coexpression of the gene immediately upstream, ydcD. Furthermore, YdcD inhibits EndoA activity directly in vitro. EndoA has similar cleavage specificity to MazF and PemK and yields cleavage products with 3′‐phosphate and 5′‐hydroxyl groups, typical of EDTA‐resistant degradative RNases. This is the first example of an antitoxin–toxin system in B. subtilis. |
---|---|
ISSN: | 0950-382X 1365-2958 |
DOI: | 10.1111/j.1365-2958.2005.04606.x |