A novel three‐dimensional scaffold for regenerative endodontics: materials and biological characterizations
An electrospun nanocomposite fibrous material holds promise as a scaffold, as well as a drug‐delivery device to aid in root maturogenesis and the regeneration of the pulp–dentine complex. A novel three‐dimensional (3D) nanocomposite scaffold composed of polydioxanone (PDS II®) and halloysite nanotub...
Gespeichert in:
Veröffentlicht in: | Journal of tissue engineering and regenerative medicine 2015-11, Vol.9 (11), p.E116-E123 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An electrospun nanocomposite fibrous material holds promise as a scaffold, as well as a drug‐delivery device to aid in root maturogenesis and the regeneration of the pulp–dentine complex. A novel three‐dimensional (3D) nanocomposite scaffold composed of polydioxanone (PDS II®) and halloysite nanotubes (HNTs) was designed and fabricated by electrospinning. Morphology, structure, mechanical properties and cell compatibility studies were carried out to evaluate the effects of HNTs incorporation (0.5–10 wt% relative to PDS w/w). Overall, a 3D porous network was seen in the different fabricated electrospun scaffolds, regardless of the HNT content. The incorporation of HNTs at 10 wt% led to a significant (p |
---|---|
ISSN: | 1932-6254 1932-7005 |
DOI: | 10.1002/term.1712 |