What potential is there for the use of ZrO2 nanostructures for image-guided thermotherapy?

[...]the size of ZrO2 nanoparticles can be easily adjusted into a reasonable range, ideal passive targeting effect (EPR effect) can make the ZrO2 nanoparticles be transported to target tissue with carrying a large amount of payloads. [...]the surface of ZrO2 nanoparticles is fulfilled with functiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomedicine (London, England) England), 2015-11, Vol.10 (22), p.3311-3313
1. Verfasser: Xianwei, Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3313
container_issue 22
container_start_page 3311
container_title Nanomedicine (London, England)
container_volume 10
creator Xianwei, Meng
description [...]the size of ZrO2 nanoparticles can be easily adjusted into a reasonable range, ideal passive targeting effect (EPR effect) can make the ZrO2 nanoparticles be transported to target tissue with carrying a large amount of payloads. [...]the surface of ZrO2 nanoparticles is fulfilled with functional groups, which can be easily combined with highly hydrophilic molecules such as poly(ethylene glycol) for prolonged in vivo circulation and with targeting ligands for enhancement of tumor targeting. [...]conjugation of ZrO2 nanocarriers with target-specific moieties will assume an increasingly important role to develop effective theranostic agents for performance optimization, for example, prolonged circulation time, RES avoidance, barrier penetration. Furthermore, there have been a number of great innovations in terms of integration of therapeutics with ZrO2 nanocarriers, for example, chemotherapy, antibody, gene therapy and hyperthermia-based cancer treatment besides microwave thermotherapy. [...]combination of different therapies, for example, chemotherapeutic/thermotherapeutic, chemotherapeutic/gene therapeutic, chemotherapeutic/photodynamic and photodynamic/thermotherapeutic, will lead to unprecedented synergistic therapeutic efficacy with ZrO2 nanocarriers.
doi_str_mv 10.2217/nnm.15.147
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735334568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426549752</sourcerecordid><originalsourceid>FETCH-LOGICAL-p239t-95a2ad9cc7e811a0099369fbeb54dfc80ac62c18ab811bc5ea86f8c44d3b131f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK1e_AGy4MVLavYr2T2JFL-g0Isi9BI2m0mbkmTjfhz6702rXrzMvDDPDO-8CF2TdE4pye_7vpsTMSc8P0FTknOZZCpjp0fNEiGlmqAL73dpKiQl6Tma0GxUNBdTtP7c6oAHG6APjW5x43HYggNcW3dQOHrAtsZrt6K41731wUUTogN_RJpObyDZxKaC6rjZ2UPVw_7hEp3VuvVw9dtn6OP56X3xmixXL2-Lx2UyUKZCooSmulLG5CAJ0WmqFMtUXUIpeFUbmWqTUUOkLsdxaQRomdXScF6xkjBSsxm6-7k7OPsVwYeia7yBttU92OgLkjPBGBeZHNHbf-jORteP7grKx1C4ygUdqZtfKpYdVMXgxi_dvvhLjX0DSF5uPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426549752</pqid></control><display><type>article</type><title>What potential is there for the use of ZrO2 nanostructures for image-guided thermotherapy?</title><source>MEDLINE</source><source>PubMed Central</source><creator>Xianwei, Meng</creator><creatorcontrib>Xianwei, Meng</creatorcontrib><description>[...]the size of ZrO2 nanoparticles can be easily adjusted into a reasonable range, ideal passive targeting effect (EPR effect) can make the ZrO2 nanoparticles be transported to target tissue with carrying a large amount of payloads. [...]the surface of ZrO2 nanoparticles is fulfilled with functional groups, which can be easily combined with highly hydrophilic molecules such as poly(ethylene glycol) for prolonged in vivo circulation and with targeting ligands for enhancement of tumor targeting. [...]conjugation of ZrO2 nanocarriers with target-specific moieties will assume an increasingly important role to develop effective theranostic agents for performance optimization, for example, prolonged circulation time, RES avoidance, barrier penetration. Furthermore, there have been a number of great innovations in terms of integration of therapeutics with ZrO2 nanocarriers, for example, chemotherapy, antibody, gene therapy and hyperthermia-based cancer treatment besides microwave thermotherapy. [...]combination of different therapies, for example, chemotherapeutic/thermotherapeutic, chemotherapeutic/gene therapeutic, chemotherapeutic/photodynamic and photodynamic/thermotherapeutic, will lead to unprecedented synergistic therapeutic efficacy with ZrO2 nanocarriers.</description><identifier>ISSN: 1743-5889</identifier><identifier>EISSN: 1748-6963</identifier><identifier>DOI: 10.2217/nnm.15.147</identifier><identifier>PMID: 26582275</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Cancer therapies ; Contrast agents ; Humans ; Hyperthermia ; Hyperthermia, Induced - methods ; Medical prognosis ; Medical research ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - therapeutic use ; Neoplasms - drug therapy ; Quantum dots ; Taxoids - chemistry ; Taxoids - therapeutic use ; Tomography, X-Ray Computed ; Tumors ; Ultrasonic imaging ; Zirconium - chemistry ; Zirconium - therapeutic use</subject><ispartof>Nanomedicine (London, England), 2015-11, Vol.10 (22), p.3311-3313</ispartof><rights>Copyright Future Medicine Ltd Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26582275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xianwei, Meng</creatorcontrib><title>What potential is there for the use of ZrO2 nanostructures for image-guided thermotherapy?</title><title>Nanomedicine (London, England)</title><addtitle>Nanomedicine (Lond)</addtitle><description>[...]the size of ZrO2 nanoparticles can be easily adjusted into a reasonable range, ideal passive targeting effect (EPR effect) can make the ZrO2 nanoparticles be transported to target tissue with carrying a large amount of payloads. [...]the surface of ZrO2 nanoparticles is fulfilled with functional groups, which can be easily combined with highly hydrophilic molecules such as poly(ethylene glycol) for prolonged in vivo circulation and with targeting ligands for enhancement of tumor targeting. [...]conjugation of ZrO2 nanocarriers with target-specific moieties will assume an increasingly important role to develop effective theranostic agents for performance optimization, for example, prolonged circulation time, RES avoidance, barrier penetration. Furthermore, there have been a number of great innovations in terms of integration of therapeutics with ZrO2 nanocarriers, for example, chemotherapy, antibody, gene therapy and hyperthermia-based cancer treatment besides microwave thermotherapy. [...]combination of different therapies, for example, chemotherapeutic/thermotherapeutic, chemotherapeutic/gene therapeutic, chemotherapeutic/photodynamic and photodynamic/thermotherapeutic, will lead to unprecedented synergistic therapeutic efficacy with ZrO2 nanocarriers.</description><subject>Cancer therapies</subject><subject>Contrast agents</subject><subject>Humans</subject><subject>Hyperthermia</subject><subject>Hyperthermia, Induced - methods</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - therapeutic use</subject><subject>Neoplasms - drug therapy</subject><subject>Quantum dots</subject><subject>Taxoids - chemistry</subject><subject>Taxoids - therapeutic use</subject><subject>Tomography, X-Ray Computed</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Zirconium - chemistry</subject><subject>Zirconium - therapeutic use</subject><issn>1743-5889</issn><issn>1748-6963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkE1Lw0AQhhdRbK1e_AGy4MVLavYr2T2JFL-g0Isi9BI2m0mbkmTjfhz6702rXrzMvDDPDO-8CF2TdE4pye_7vpsTMSc8P0FTknOZZCpjp0fNEiGlmqAL73dpKiQl6Tma0GxUNBdTtP7c6oAHG6APjW5x43HYggNcW3dQOHrAtsZrt6K41731wUUTogN_RJpObyDZxKaC6rjZ2UPVw_7hEp3VuvVw9dtn6OP56X3xmixXL2-Lx2UyUKZCooSmulLG5CAJ0WmqFMtUXUIpeFUbmWqTUUOkLsdxaQRomdXScF6xkjBSsxm6-7k7OPsVwYeia7yBttU92OgLkjPBGBeZHNHbf-jORteP7grKx1C4ygUdqZtfKpYdVMXgxi_dvvhLjX0DSF5uPQ</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Xianwei, Meng</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20151101</creationdate><title>What potential is there for the use of ZrO2 nanostructures for image-guided thermotherapy?</title><author>Xianwei, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p239t-95a2ad9cc7e811a0099369fbeb54dfc80ac62c18ab811bc5ea86f8c44d3b131f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cancer therapies</topic><topic>Contrast agents</topic><topic>Humans</topic><topic>Hyperthermia</topic><topic>Hyperthermia, Induced - methods</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - therapeutic use</topic><topic>Neoplasms - drug therapy</topic><topic>Quantum dots</topic><topic>Taxoids - chemistry</topic><topic>Taxoids - therapeutic use</topic><topic>Tomography, X-Ray Computed</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Zirconium - chemistry</topic><topic>Zirconium - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xianwei, Meng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>UK &amp; Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Nanomedicine (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xianwei, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What potential is there for the use of ZrO2 nanostructures for image-guided thermotherapy?</atitle><jtitle>Nanomedicine (London, England)</jtitle><addtitle>Nanomedicine (Lond)</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>10</volume><issue>22</issue><spage>3311</spage><epage>3313</epage><pages>3311-3313</pages><issn>1743-5889</issn><eissn>1748-6963</eissn><abstract>[...]the size of ZrO2 nanoparticles can be easily adjusted into a reasonable range, ideal passive targeting effect (EPR effect) can make the ZrO2 nanoparticles be transported to target tissue with carrying a large amount of payloads. [...]the surface of ZrO2 nanoparticles is fulfilled with functional groups, which can be easily combined with highly hydrophilic molecules such as poly(ethylene glycol) for prolonged in vivo circulation and with targeting ligands for enhancement of tumor targeting. [...]conjugation of ZrO2 nanocarriers with target-specific moieties will assume an increasingly important role to develop effective theranostic agents for performance optimization, for example, prolonged circulation time, RES avoidance, barrier penetration. Furthermore, there have been a number of great innovations in terms of integration of therapeutics with ZrO2 nanocarriers, for example, chemotherapy, antibody, gene therapy and hyperthermia-based cancer treatment besides microwave thermotherapy. [...]combination of different therapies, for example, chemotherapeutic/thermotherapeutic, chemotherapeutic/gene therapeutic, chemotherapeutic/photodynamic and photodynamic/thermotherapeutic, will lead to unprecedented synergistic therapeutic efficacy with ZrO2 nanocarriers.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>26582275</pmid><doi>10.2217/nnm.15.147</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1743-5889
ispartof Nanomedicine (London, England), 2015-11, Vol.10 (22), p.3311-3313
issn 1743-5889
1748-6963
language eng
recordid cdi_proquest_miscellaneous_1735334568
source MEDLINE; PubMed Central
subjects Cancer therapies
Contrast agents
Humans
Hyperthermia
Hyperthermia, Induced - methods
Medical prognosis
Medical research
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - therapeutic use
Neoplasms - drug therapy
Quantum dots
Taxoids - chemistry
Taxoids - therapeutic use
Tomography, X-Ray Computed
Tumors
Ultrasonic imaging
Zirconium - chemistry
Zirconium - therapeutic use
title What potential is there for the use of ZrO2 nanostructures for image-guided thermotherapy?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20potential%20is%20there%20for%20the%20use%20of%20ZrO2%20nanostructures%20for%20image-guided%20thermotherapy?&rft.jtitle=Nanomedicine%20(London,%20England)&rft.au=Xianwei,%20Meng&rft.date=2015-11-01&rft.volume=10&rft.issue=22&rft.spage=3311&rft.epage=3313&rft.pages=3311-3313&rft.issn=1743-5889&rft.eissn=1748-6963&rft_id=info:doi/10.2217/nnm.15.147&rft_dat=%3Cproquest_pubme%3E2426549752%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426549752&rft_id=info:pmid/26582275&rfr_iscdi=true