Hydrogen-rich water attenuates amyloid β-induced cytotoxicity through upregulation of Sirt1-FoxO3a by stimulation of AMP-activated protein kinase in SK-N-MC cells
Amyloid β (Aβ) peptides are identified in cause of neurodegenerative diseases such as Alzheimer's disease (AD). Previous evidence suggests Aβ-induced neurotoxicity is linked to the stimulation of reactive oxygen species (ROS) production. The accumulation of Aβ-induced ROS leads to increased mit...
Gespeichert in:
Veröffentlicht in: | Chemico-biological interactions 2015-10, Vol.240, p.12-21 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Amyloid β (Aβ) peptides are identified in cause of neurodegenerative diseases such as Alzheimer's disease (AD). Previous evidence suggests Aβ-induced neurotoxicity is linked to the stimulation of reactive oxygen species (ROS) production. The accumulation of Aβ-induced ROS leads to increased mitochondrial dysfunction and triggers apoptotic cell death. This suggests antioxidant therapies may be beneficial for preventing ROS-related diseases such as AD. Recently, hydrogen-rich water (HRW) has been proven effective in treating oxidative stress-induced disorders because of its ROS-scavenging abilities. However, the precise molecular mechanisms whereby HRW prevents neuronal death are still unclear. In the present study, we evaluated the putative pathways by which HRW protects against Aβ-induced cytotoxicity. Our results indicated that HRW directly counteracts oxidative damage by neutralizing excessive ROS, leading to the alleviation of Aβ-induced cell death. In addition, HRW also stimulated AMP-activated protein kinase (AMPK) in a sirtuin 1 (Sirt1)-dependent pathway, which upregulates forkhead box protein O3a (FoxO3a) downstream antioxidant response and diminishes Aβ-induced mitochondrial potential loss and oxidative stress. Taken together, our findings suggest that HRW may have potential therapeutic value to inhibit Aβ-induced neurotoxicity.
•HRW suppresses H2O2-generated ROS directly in vitro.•HRW attenuates Aβ-induced neurotoxicity in cultured human neuronal cells.•HRW upregulates Aβ-suppressed AMPK and downstream Sirt1-FoxO3a signaling.•HRW reduces Aβ-induced ROS accumulation and upregulates intracellular antioxidative enzymes such as SOD1, SOD2, and catalase. |
---|---|
ISSN: | 0009-2797 1872-7786 |
DOI: | 10.1016/j.cbi.2015.07.013 |