Tests of Phylogeographic Models with Nuclear and Mitochondrial DNA Sequence Variation in the Stone Crabs, Menippe adina and Menippe mercenaria
Evolutionary relationships among stone crabs (Menippe) from the Gulf of Mexico and western Atlantic were investigated by comparisons of restriction sites within anonymous nuclear DNA sequences and nucleotide sequences of both mitochondrial and a duplicated nuclear form of the mitochondrial large sub...
Gespeichert in:
Veröffentlicht in: | Evolution 1998-12, Vol.52 (6), p.1671-1678 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Evolutionary relationships among stone crabs (Menippe) from the Gulf of Mexico and western Atlantic were investigated by comparisons of restriction sites within anonymous nuclear DNA sequences and nucleotide sequences of both mitochondrial and a duplicated nuclear form of the mitochondrial large subunit ribosomal RNA (LSrDNA) gene. A survey of over 100 restriction sites by Southern blot analysis with 10 anonymous nuclear DNA sequence probes failed to reveal any differences between Menippe adina and M. mercenaria. Sequence comparisons of both mitochondrial and nuclear forms of the LSrDNA gene also did not distinguish these species. Although both LSrDNA gene sequences were variable, some haplotypes were shared by the two species, implying either incomplete gene lineage sorting or introgressive hybridization. Based on molecular clock calibrations, we estimate that all of the observed mitochondrial LSrDNA sequences share a common ancestor between 1.5 and 2.7 million years before present (M.Y.B.P.). However, because identical sequences are shared by the two species, these data are also compatible with a more recent common ancestry. These findings conflict with a previously proposed biogeographic scenario for North American Menippe, which featured a relict hybrid zone on the Atlantic Coast. We suggest an alternative scenario based on relatively recent events and ongoing, rather than historical, gene flow. |
---|---|
ISSN: | 0014-3820 1558-5646 |
DOI: | 10.2307/2411339 |