The Water and Energy Budget of the Arctic Atmosphere

The Arctic plays a major role in the global circulation, and its water and energy budget is not as well explored as that in other regions of the world. The aim of this study is to calculate the climatological mean water and energy fluxes depending on the season and on the North Atlantic Oscillation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2005-07, Vol.18 (13), p.2515-2530
Hauptverfasser: Semmler, Tido, Jacob, Daniela, Schlünzen, K. Heinke, Podzun, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Arctic plays a major role in the global circulation, and its water and energy budget is not as well explored as that in other regions of the world. The aim of this study is to calculate the climatological mean water and energy fluxes depending on the season and on the North Atlantic Oscillation (NAO) through the lower, lateral, and upper boundaries of the Arctic atmosphere north of 70°N. The relevant fluxes are derived from results of the regional climate model (REMO 5.1), which is applied to the Arctic region for the time period 1979–2000. Model forcing data are a combination of 15-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-15) data and analysis data. The annual and seasonal total water and energy fluxes derived from REMO 5.1 results are very similar to the fluxes calculated from observational and reanalysis data, although there are some differences in the components. The agreement between simulated and observed total fluxes shows that these fluxes are reliable. Even if differences between high and low NAO situations occur in our simulation consistent with previous studies, these differences are mostly smaller than the large uncertainties due to a small sample size of the NAO high and low composites.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI3414.1