Serotonin transporter is not required for the development of severe pulmonary hypertension in the Sugen hypoxia rat model

Increased serotonin serum levels have been proposed to play a key role in pulmonary arterial hypertension (PAH) by regulating vessel tone and vascular smooth muscle cell proliferation. An intact serotonin system, which critically depends on a normal function of the serotonin transporter (SERT), is r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Lung cellular and molecular physiology 2015-11, Vol.309 (10), p.L1164-L1173
Hauptverfasser: de Raaf, Michiel Alexander, Kroeze, Yvet, Middelman, Anthonieke, de Man, Frances S, de Jong, Helma, Vonk-Noordegraaf, Anton, de Korte, Chris, Voelkel, Norbert F, Homberg, Judith, Bogaard, Harm Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased serotonin serum levels have been proposed to play a key role in pulmonary arterial hypertension (PAH) by regulating vessel tone and vascular smooth muscle cell proliferation. An intact serotonin system, which critically depends on a normal function of the serotonin transporter (SERT), is required for the development of experimental pulmonary hypertension in rodents exposed to hypoxia or monocrotaline. While these animal models resemble human PAH only with respect to vascular media remodeling, we hypothesized that SERT is likewise required for the presence of lumen-obliterating intima remodeling, a hallmark of human PAH reproduced in the Sugen hypoxia (SuHx) rat model of severe angioproliferative pulmonary hypertension. Therefore, SERT wild-type (WT) and knockout (KO) rats were exposed to the SuHx protocol. SERT KO rats, while completely lacking SERT, were hemodynamically indistinguishable from WT rats. After exposure to SuHx, similar degrees of severe angioproliferative pulmonary hypertension and right ventricular hypertrophy developed in WT and KO rats (right ventricular systolic pressure 60 vs. 55 mmHg, intima thickness 38 vs. 30%, respectively). In conclusion, despite its implicated importance in PAH, SERT does not play an essential role in the pathogenesis of severe angioobliterative pulmonary hypertension in rats exposed to SuHx.
ISSN:1040-0605
1522-1504
DOI:10.1152/ajplung.00127.2015