Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy
Much of lipid raft properties can be inferred from phase behavior of multicomponent lipid membranes. We use liquid compatible atomic force microscopy (AFM) to study a three-component system composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), egg sphingomyelin (eSM), and cholesterol. Specifi...
Gespeichert in:
Veröffentlicht in: | Langmuir 2015-11, Vol.31 (45), p.12417-12425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Much of lipid raft properties can be inferred from phase behavior of multicomponent lipid membranes. We use liquid compatible atomic force microscopy (AFM) to study a three-component system composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), egg sphingomyelin (eSM), and cholesterol. Specifically, we obtain macroscopic and nanoscopic heterogeneous structures in a broad compositional space of DOPC/eSM/cholesterol (23 °C). In the macroscopic liquid coexisting region, we quantify area fraction of the coexisting phases and determine a set of thermodynamic tie-lines. When lipid compositions are near the critical point, we obtain fluctuation-like nanoscopic structures. We also use AFM height images to explore the hypothetical three-phase coexisting region. Finally, we use fluorescence microscopy to compare the phase behavior from our AFM measurements to that in free-floating giant unilamellar vesicles (GUVs). Our results highlight the role of lipid composition in mediating lipid domain formation and stability. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b02863 |