The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation

Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2016-01, Vol.53, p.21-39
Hauptverfasser: Limbert, Georges, Omar, Rodaina, Krynauw, Hugo, Bezuidenhout, Deon, Franz, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue
container_start_page 21
container_title Journal of the mechanical behavior of biomedical materials
container_volume 53
creator Limbert, Georges
Omar, Rodaina
Krynauw, Hugo
Bezuidenhout, Deon
Franz, Thomas
description Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress–strain data of the scaffolds at various stages of degradation. During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02±0.23MPa to 0.38±0.004MPa and from 46±11% to 12±2%, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071±0.016MPa to 0.010±0.007MPa and from 69±24% to 8±2%, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r2>0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation.
doi_str_mv 10.1016/j.jmbbm.2015.07.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1733190489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616115002556</els_id><sourcerecordid>1733190489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-810730bf955e3c1efe6fa4dba1b612221829a9368c3e3c065a5da70d0a8aa27d3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhqMK1Bs8ARLykk3CTJyLg8QCVW1BqsSmrK2JPeH4KImDnRzRt-CR6_YUlqx8mW_-XzN_lr1DKBCw-bgv9lPfT0UJWBfQFoDVSXaOqlU5oIJX6d7WmDfY4Fl2EeMeoAFQ6jQ7KxsJKLE9z_7c71jQ7KJfg1-cERObXXobGkXPOzo4vwXhB8Ejm4Tkcdlm0Ttv-WcgS_3IYvHjw8RBREPD4EcbP4nr3wsHN_G8Jp0kGMis6SPS6vyc_Kwwfo6rW7fVHVgMPkzb-Fx8k70eaIz89uW8zH7cXN9ffc3vvt9-u_pyl5sKqjVXCK2EfujqmqVBHrgZqLI9Yd9gWZaoyo462SgjUx2ammpLLVggRVS2Vl5mH466S_C_No6rnlw0PI40s9-ixlZK7KBSXULlETXBxxh40EuajcKDRtBPUei9fo5CP0WhodUpitT1_sVg6ye2_3r-7j4Bn48ApzEPjoOOxvFs2LqQdq2td_81eARJmp_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733190489</pqid></control><display><type>article</type><title>The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Limbert, Georges ; Omar, Rodaina ; Krynauw, Hugo ; Bezuidenhout, Deon ; Franz, Thomas</creator><creatorcontrib>Limbert, Georges ; Omar, Rodaina ; Krynauw, Hugo ; Bezuidenhout, Deon ; Franz, Thomas</creatorcontrib><description>Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress–strain data of the scaffolds at various stages of degradation. During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02±0.23MPa to 0.38±0.004MPa and from 46±11% to 12±2%, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071±0.016MPa to 0.010±0.007MPa and from 69±24% to 8±2%, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r2&gt;0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2015.07.014</identifier><identifier>PMID: 26301317</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Anisotropy ; Biodegradable ; Constitutive modelling ; Electricity ; Electro-spinning ; Mechanical Phenomena ; Mechanical properties ; Molecular Weight ; Polyesters - chemistry ; Polymer ; Stress, Mechanical ; Tissue Scaffolds - chemistry ; Transverse isotropy ; Urethane - chemistry</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2016-01, Vol.53, p.21-39</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-810730bf955e3c1efe6fa4dba1b612221829a9368c3e3c065a5da70d0a8aa27d3</citedby><cites>FETCH-LOGICAL-c404t-810730bf955e3c1efe6fa4dba1b612221829a9368c3e3c065a5da70d0a8aa27d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616115002556$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26301317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Limbert, Georges</creatorcontrib><creatorcontrib>Omar, Rodaina</creatorcontrib><creatorcontrib>Krynauw, Hugo</creatorcontrib><creatorcontrib>Bezuidenhout, Deon</creatorcontrib><creatorcontrib>Franz, Thomas</creatorcontrib><title>The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress–strain data of the scaffolds at various stages of degradation. During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02±0.23MPa to 0.38±0.004MPa and from 46±11% to 12±2%, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071±0.016MPa to 0.010±0.007MPa and from 69±24% to 8±2%, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r2&gt;0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation.</description><subject>Anisotropy</subject><subject>Biodegradable</subject><subject>Constitutive modelling</subject><subject>Electricity</subject><subject>Electro-spinning</subject><subject>Mechanical Phenomena</subject><subject>Mechanical properties</subject><subject>Molecular Weight</subject><subject>Polyesters - chemistry</subject><subject>Polymer</subject><subject>Stress, Mechanical</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Transverse isotropy</subject><subject>Urethane - chemistry</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1TAQhqMK1Bs8ARLykk3CTJyLg8QCVW1BqsSmrK2JPeH4KImDnRzRt-CR6_YUlqx8mW_-XzN_lr1DKBCw-bgv9lPfT0UJWBfQFoDVSXaOqlU5oIJX6d7WmDfY4Fl2EeMeoAFQ6jQ7KxsJKLE9z_7c71jQ7KJfg1-cERObXXobGkXPOzo4vwXhB8Ejm4Tkcdlm0Ttv-WcgS_3IYvHjw8RBREPD4EcbP4nr3wsHN_G8Jp0kGMis6SPS6vyc_Kwwfo6rW7fVHVgMPkzb-Fx8k70eaIz89uW8zH7cXN9ffc3vvt9-u_pyl5sKqjVXCK2EfujqmqVBHrgZqLI9Yd9gWZaoyo462SgjUx2ammpLLVggRVS2Vl5mH466S_C_No6rnlw0PI40s9-ixlZK7KBSXULlETXBxxh40EuajcKDRtBPUei9fo5CP0WhodUpitT1_sVg6ye2_3r-7j4Bn48ApzEPjoOOxvFs2LqQdq2td_81eARJmp_Q</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Limbert, Georges</creator><creator>Omar, Rodaina</creator><creator>Krynauw, Hugo</creator><creator>Bezuidenhout, Deon</creator><creator>Franz, Thomas</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation</title><author>Limbert, Georges ; Omar, Rodaina ; Krynauw, Hugo ; Bezuidenhout, Deon ; Franz, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-810730bf955e3c1efe6fa4dba1b612221829a9368c3e3c065a5da70d0a8aa27d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Biodegradable</topic><topic>Constitutive modelling</topic><topic>Electricity</topic><topic>Electro-spinning</topic><topic>Mechanical Phenomena</topic><topic>Mechanical properties</topic><topic>Molecular Weight</topic><topic>Polyesters - chemistry</topic><topic>Polymer</topic><topic>Stress, Mechanical</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Transverse isotropy</topic><topic>Urethane - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Limbert, Georges</creatorcontrib><creatorcontrib>Omar, Rodaina</creatorcontrib><creatorcontrib>Krynauw, Hugo</creatorcontrib><creatorcontrib>Bezuidenhout, Deon</creatorcontrib><creatorcontrib>Franz, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Limbert, Georges</au><au>Omar, Rodaina</au><au>Krynauw, Hugo</au><au>Bezuidenhout, Deon</au><au>Franz, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2016-01</date><risdate>2016</risdate><volume>53</volume><spage>21</spage><epage>39</epage><pages>21-39</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress–strain data of the scaffolds at various stages of degradation. During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02±0.23MPa to 0.38±0.004MPa and from 46±11% to 12±2%, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071±0.016MPa to 0.010±0.007MPa and from 69±24% to 8±2%, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r2&gt;0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26301317</pmid><doi>10.1016/j.jmbbm.2015.07.014</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2016-01, Vol.53, p.21-39
issn 1751-6161
1878-0180
language eng
recordid cdi_proquest_miscellaneous_1733190489
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anisotropy
Biodegradable
Constitutive modelling
Electricity
Electro-spinning
Mechanical Phenomena
Mechanical properties
Molecular Weight
Polyesters - chemistry
Polymer
Stress, Mechanical
Tissue Scaffolds - chemistry
Transverse isotropy
Urethane - chemistry
title The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20anisotropic%20mechanical%20behaviour%20of%20electro-spun%20biodegradable%20polymer%20scaffolds:%20Experimental%20characterisation%20and%20constitutive%20formulation&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Limbert,%20Georges&rft.date=2016-01&rft.volume=53&rft.spage=21&rft.epage=39&rft.pages=21-39&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2015.07.014&rft_dat=%3Cproquest_cross%3E1733190489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733190489&rft_id=info:pmid/26301317&rft_els_id=S1751616115002556&rfr_iscdi=true