The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation
Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optim...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2016-01, Vol.53, p.21-39 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds.
Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress–strain data of the scaffolds at various stages of degradation.
During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02±0.23MPa to 0.38±0.004MPa and from 46±11% to 12±2%, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071±0.016MPa to 0.010±0.007MPa and from 69±24% to 8±2%, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r2>0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2015.07.014 |