A comparison of diurnal dynamics of water quality parameters in Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) monoculture and polyculture with African sharp tooth catfish (Clarias gariepinus, Burchell, 1822) in earthen ponds

The overall performance of an aquaculture system is partly determined by its water quality parameters. Poor water quality stresses and adversely affects fish growth causing low production, profit and product quality. Diurnal dynamics of water quality parameters were investigated in Nile tilapia ( Or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International aquatic research 2014-04, Vol.6 (1), p.1-13, Article 56
Hauptverfasser: Shoko, Amon P., Limbu, Samwel M., Mrosso, Hillary D. J., Mgaya, Yunus D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The overall performance of an aquaculture system is partly determined by its water quality parameters. Poor water quality stresses and adversely affects fish growth causing low production, profit and product quality. Diurnal dynamics of water quality parameters were investigated in Nile tilapia ( Oreochromis niloticus ) monoculture and polyculture with Clarias gariepinus in earthen ponds. Dissolved oxygen, temperature and pH were measured and monitored for 24 h. Water samples for nutrient analysis were collected from the middle of ponds in triplicate at about 30–35 cm below the water surface using a plastic bottle. Nitrite–nitrogen (NO 2 –N), nitrate–nitrogen (NO 3 –N), unionised ammonia (NH 3 –N), soluble reactive phosphorus and free carbon dioxide were analysed following standard methods and procedures. The results show that dissolved oxygen concentrations during the past midnight and pre-dawn hours were significantly lower than the levels in the morning and afternoon hours (ANOVA, F  = 45.709, P   0.05). Fish yield was relatively higher in polyculture (45.74 ± 0.44 tons/ha) than monoculture (30.77 ± 0.54 tons/ha). During fish farming, optimum fish growth and hence economic benefits can be accrued by devoting some efforts on monitoring the fish pond water at regular intervals. This quality assurance process will ensure that fish farmers produce fish with maximum growth and yield without polluting pond water and the surrounding environment.
ISSN:2008-4935
2008-6970
DOI:10.1007/s40071-014-0056-8