Variability in the composition and export of silica in the Huanghe River Basin

Concentrations of suspended particle material (SPM), dissolved silicate (DSi), biogenic silica (BSi), phytoliths (plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influence of both natural processes and human activities on silica delivery to the est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Earth sciences 2015-11, Vol.58 (11), p.2078-2089
Hauptverfasser: Ran, XiangBin, Che, Hong, Zang, JiaYe, Yu, YongGui, Liu, Sen, Zheng, LiLi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Concentrations of suspended particle material (SPM), dissolved silicate (DSi), biogenic silica (BSi), phytoliths (plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influence of both natural processes and human activities on silica delivery to the estuary of the Huanghe River (Yellow River). Our results indicate that the concentrations of DSi in the river decreased significantly since 1986. Approximately 34% of dissolved silica was trapped in the basin between 1986 and 2010 due to a reduction of soil erosion. Phytoliths comprised 67.2%-96.3% of BSi, with the smoothing bar type being the dominant form. Concentrations of BSi are significantly higher in the Huanghe River compared to other major rivers throughout the world due to its high sediment yield. We also found that the ratios of BSi/(BSi+DSi) and BSi/SPM were approximately 0.5 and 0.003 at Lijin near the river mouth, indicating that BSi carried in suspension by the Huanghe River was an important component of the rivers silica load. Significant amounts of BSi were also composed of phytoliths in Bohai Sea sediments near the Huanghe River estuary with the smoothing bar form again being the most abundant. The relatively high specific fluxes of BSi in the Huanghe River reflect its high turbidity and high erosion rates in the basin. The high sediment load originating on the Loess Plateau is likely responsible for the higher BSi flux, in agreement with a general trend of increasing BSi flux with increasing sediment flux in global river systems. This study demonstrates that BSi transported by rivers can be composed largely of phytoliths originating from the erosion of topsoils. The flux of phytoliths in river's suspended sediment load may therefore represent a significant contribution to the biogeochemical cycle of silica in coastal waters.
ISSN:1674-7313
1869-1897
DOI:10.1007/s11430-015-5064-z