Endophilin-1 regulates blood-brain barrier permeability via EGFR-JNK signaling pathway
Abstract Endophilin-1 (Endo1), a multifunctional protein, is essential for synaptic vesicle endocytosis. However, the role and mechanism of endophilin-1 in blood–brain barrier (BBB) function are still unclear. This study was performed to determine whether endophilin-1 regulated BBB permeability via...
Gespeichert in:
Veröffentlicht in: | Brain research 2015-05, Vol.1606, p.44-53 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Endophilin-1 (Endo1), a multifunctional protein, is essential for synaptic vesicle endocytosis. However, the role and mechanism of endophilin-1 in blood–brain barrier (BBB) function are still unclear. This study was performed to determine whether endophilin-1 regulated BBB permeability via the EGFR-JNK signaling pathway. In the present study, we found that endophilin-1 over-expression in human cerebral microvascular endothelial cell (hCMEC/D3) increased BBB permeability and meanwhile reduced the expression levels of epidermal growth factor receptor (EGFR), phosphorylated c-Jun N-terminal kinase (p-JNK). While endophilin-1 knockdown led to the contrary results. After JNK inhibitor SP600125 was administered to the endophilin-1 silenced hCMEC/D3 cells, the transendothelial electrical resistance (TEER) value was decreased and the permeability coefficient values to 4 kDa and 40 kDa FITC–dextran were increased. Results observed by Transmission electron microscopy (TEM) showed that tight junctions (TJs) were opened. Moreover, immunofluorescence and Western blot assays revealed the discontinuous distribution of TJ-associated proteins ZO-1, occludin on cell–cell boundaries and a significant decrease in protein expressing levels. Therefore, these results indicated that endophilin-1 positively regulated BBB permeability via the EGFR-JNK signaling pathway in hCMEC/D3 cells, which would provide an experimental basis for further research on endophilin-1 mediated the opening of BBB. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/j.brainres.2015.02.032 |