Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers: e0136237

Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-08, Vol.10 (8)
Hauptverfasser: Briber, Brittain M, Hutyra, Lucy R, Reinmann, Andrew B, Raciti, Steve M, Dearborn, Victoria K, Holden, Christopher E, Dunn, Allison L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 plus or minus 8.0 Mg C ha-1. As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 plus or minus 3.0 to 35.8 plus or minus 4.7 cm2 yr-1. Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 plus or minus 0.4 Mg C ha-1 yr-1, a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.
ISSN:1932-6203
DOI:10.1371/journal.pone.0136237