Differential expression profiles and roles of inducible DUSPs and ERK1/2-specific constitutive DUSP6 and DUSP7 in microglia

Dual-specificity phosphatases (DUSPs) show distinct substrate preferences for specific MAPKs. DUSPs sharing a substrate preference for ERK1/2 may be classified as inducible or constitutive. In contrast to the inducible DUSPs which also dephosphorylate p38 MAPK and JNK in the major inflammatory pathw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2015-11, Vol.467 (2), p.254-260
Hauptverfasser: Ham, Ji-Eun, Oh, Eun-Kyung, Kim, Dong-Hoon, Choi, Sang-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dual-specificity phosphatases (DUSPs) show distinct substrate preferences for specific MAPKs. DUSPs sharing a substrate preference for ERK1/2 may be classified as inducible or constitutive. In contrast to the inducible DUSPs which also dephosphorylate p38 MAPK and JNK in the major inflammatory pathways, constitutive DUSP6 and DUSP7 are specific to ERK1/2 and have not been studied in microglia and other immune cells to date. In the present study, we differentiated mRNA expression profiles of inducible and constitutive DUSPs that dephosphorylate ERK1/2 in microglia. Lipopolysaccharide (LPS) at 1 ng/ml induced prompt phosphorylation of ERK1/2 with peak induction at 30 min. LPS induced expression of DUSP1, DUSP2, and DUSP5 within 60 min, whereas DUSP4 expression was induced more slowly. DUSP6 and DUSP7 exhibited constitutive basal expression, which decreased immediately after LPS stimulation but subsequently returned to basal levels. The expression of DUSP6 and DUSP7 was regulated inverse to the phosphorylation of ERK1/2 in LPS-stimulated microglia. Therefore, we next investigated the correlation between DUSP6 and DUSP7 expression and ERK1/2 phosphorylation in resting and LPS-stimulated microglia. Inhibition of the ERK1/2 pathway by PD98059 and FR180204 resulted in a decrease in DUSP6 and DUSP7 expression, both in resting and LPS-stimulated microglia. These inhibitors partially blocked the LPS-induced expression of DUSP1, DUSP2, and DUSP4, but had no effect on DUSP5. Finally, we examined the role of DUSP6 activity in the downregulation of ERK1/2 phosphorylation. BCI, an inhibitor of DUSP6, increased the phosphorylation of ERK1/2. However, pretreatment with BCI inhibited the LPS-induced phosphorylation of ERK1/2. These results demonstrate that constitutive DUPS6 and DUSP7 expression was downregulated inverse to the expression of inducible DUSPs and the phosphorylation of ERK1/2 in LPS-stimulated microglia. The expression of DUPS6 and DUSP7 was mediated by ERK1/2 activity both in resting and LPS-stimulated microglia. In turn, DUSP6 suppressed the basal phosphorylation of ERK1/2, but exerted no suppressive effect on LPS-induced phosphorylation. Although DUSP6 is acknowledged as a negative regulator of the ERK1/2 pathway, such roles of DUSP6 need to be examined further in activated microglia. •ERK1/2 phosphorylation increased immediately after LPS treatment.•Constitutive expression of DUSP6 decreased immediately after LPS treatment.•ERK1/2 mediated DUSP6 expressio
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2015.09.180