Effects of atrazine and chlorpyrifos on oxidative stress-induced autophagy in the immune organs of common carp (Cyprinus carpio L.)

Atrazine (ATR) and chlorpyrifos (CPF) are the most common agrochemical in the freshwater ecosystems of the world. This study assessed the effects of ATR (4.28, 42.8 and 428 μg/L), CPF (1.16, 11.6 and 116 μg/L) and combined ATR/CPF (1.13, 11.3 and 113 μg/L) on common carp head kidneys and spleens fol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish & shellfish immunology 2015-05, Vol.44 (1), p.12-20
Hauptverfasser: Chen, Dechun, Zhang, Ziwei, Yao, Haidong, Liang, Yang, Xing, Houjuan, Xu, Shiwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atrazine (ATR) and chlorpyrifos (CPF) are the most common agrochemical in the freshwater ecosystems of the world. This study assessed the effects of ATR (4.28, 42.8 and 428 μg/L), CPF (1.16, 11.6 and 116 μg/L) and combined ATR/CPF (1.13, 11.3 and 113 μg/L) on common carp head kidneys and spleens following 40 d exposure and 40 d recovery treatments. Nitric oxide (NO) content, activities of anti hydroxyl radical (AHR), anti superoxide anion (ASA), peroxidase (POD) and inducible nitric oxide synthase (iNOS), and the mRNA levels of the autophagy genes (LC3-II, dynein, TOR) were determined. The results indicate that the antioxidant enzyme (AHR, ASA, POD and iNOS) activities and NO content in the head kidney and spleen of the common carp increased significantly after a 40 d exposure to ATR and CPF alone or in combination. The mRNA levels of LC3-II and dynein in common carp increased significantly after exposure to ATR and CPF alone, or in combination. Moreover, the mRNA levels of LC3-II and dynein decreased significantly after a 40-d recovery. However, the mRNA levels of TOR gene for all decreased significantly at the end of the exposure and the recovery. To our knowledge, this is the first study to report the oxidative stress-induced autophagic effects in the common carp by exposure to ATR, CPF and the ATR/CPF combination. The information presented in the present study may be helpful to understanding the mechanisms of autophagy induced by ATR, CPF and the ATR/CPF combination in fish. •Autophagy genes of common carp were investigated by ATR, CPF and their combination.•Our aim was to evaluate the sub-chronic effects of ATR and CPF on carp.•Autophagy is involved in oxidative stress and immune organ damage induced by ATR and CPF.
ISSN:1050-4648
1095-9947
DOI:10.1016/j.fsi.2015.01.014