Alterations in the Nrf2–Keap1 signaling pathway and its downstream target genes in rat brain under stress

Abstract Knowledge of the antioxidant defense in the stress-responding structures of the CNS is of crucial importance, since oxidative damage is a phenomenon accompanying many stress-related disorders. Regulation of antioxidative and anti-inflammatory defense through Nrf2 (nuclear factor 2 eritroid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2015-03, Vol.1602, p.20-31
Hauptverfasser: Djordjevic, Jelena, Djordjevic, Ana, Adzic, Miroslav, Mitic, Milos, Lukic, Iva, Radojcic, Marija B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Knowledge of the antioxidant defense in the stress-responding structures of the CNS is of crucial importance, since oxidative damage is a phenomenon accompanying many stress-related disorders. Regulation of antioxidative and anti-inflammatory defense through Nrf2 (nuclear factor 2 eritroid related factor 2) pathway has emerged as a promising approach for neuroprotection. In this study, we used chronic social isolation of male Wistar rats to induce depressive-like behavior. We hypothesized that Nrf2–Keap1 pathway is compromised in the limbic brain after prolonged stress. Since subcellular trafficking of Nrf2 and its inhibitor Keap1 (Kelch ECH associating protein 1) is essential for the activation of Nrf2, we determined their protein level in cytosolic and nuclear compartments of hippocampus and prefrontal cortex (PFC). We also determined mRNA levels of Nrf2-regulated genes involved in the production and utilization of glutathione, glutamate cysteine ligase (Gclm), glutathione S-transferase (Gsta3) and glutathione reductase (Gsr). Our results showed that chronic isolation induced anxiety and depressive-like behavior, decreased Nrf2 and in parallel increased Keap1 and nuclear factor kappa B (NFκB) in the hippocampus, which were not accompanied by expression profiles of Nrf2-regulated genes. Chronically stressed rats challenged with acute stress failed to induce any response of examined genes in either of brain structures, even though Nrf2/Keap1 was altered, while in naïve animals Nrf2 activity corresponded with an expression of Nrf2-regulated genes. Our results reveal maladaptive character of chronic stress at Nrf2/Keap1 level followed by pro-inflammatory conditions, and suggest a possible role of these alterations in pathogenesis of depressive/anxiety disorders.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2015.01.010