Maneuverability - general issues
Maneuvers may be defined as a series of changes in direction and position for a specified purpose (as in changing course, switching tracks, or docking). Although the definition excludes hovering, this is considered to be a maneuver by biologists. Maneuvers are typically complex, combining more than...
Gespeichert in:
Veröffentlicht in: | IEEE journal of oceanic engineering 2004-07, Vol.29 (3), p.547-555 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maneuvers may be defined as a series of changes in direction and position for a specified purpose (as in changing course, switching tracks, or docking). Although the definition excludes hovering, this is considered to be a maneuver by biologists. Maneuvers are typically complex, combining more than one translational and rotational component. They are usually driven by hydrodynamic forces, which may be classified as trimming (steering), driven by the kinetic energy of a moving animal, or powered forces, driven by force generation by the control surfaces themselves. Force production by effectors are affected by molecular structure, material properties, degrees of freedom for movement, the number of propulsors working together, and interactions with other organisms/objects, as well as time through a maneuver and/or a powered fin beat. The result is a large repertoire of maneuvering behaviors and high redundancy in control systems. There is no unanimity on quantifying maneuvering performance, but maximum capabilities appear to be most appropriate. Performance metrics will vary from maneuver to maneuver and the scaling product group seems unlikely even for specified maneuvers. An exception is relative volume swept out. Seeking inspiration from biology for the design of autonomous underwater vehicles requires explicit a priori statements of mission goals. |
---|---|
ISSN: | 0364-9059 1558-1691 |
DOI: | 10.1109/JOE.2004.833220 |