Bayesian decision theory on three-layer neural networks
We discuss the Bayesian decision theory on neural networks. In the two-category case where the state-conditional probabilities are normal, a three-layer neural network having d hidden layer units can approximate the posterior probability in L p ( R d , p ) , where d is the dimension of the space of...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2005, Vol.63, p.209-228 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss the Bayesian decision theory on neural networks. In the two-category case where the state-conditional probabilities are normal, a three-layer neural network having
d hidden layer units can approximate the posterior probability in
L
p
(
R
d
,
p
)
, where
d is the dimension of the space of observables. We extend this result to multicategory cases. Then, the number of the hidden layer units must be increased, but can be bounded by
1
2
d
(
d
+
1
)
irrespective of the number of categories if the neural network has direct connections between the input and output layers. In the case where the state-conditional probability is one of familiar probability distributions such as binomial, multinomial, Poisson, negative binomial distributions and so on, a two-layer neural network can approximate the posterior probability. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/j.neucom.2004.05.005 |