Vitamin E and β-carotene protect against ethanol combined with ischemia in an embryonic rat hippocampal culture model of fetal alcohol syndrome

Neurodevelopmental damage can occur as a result of in utero exposure to alcohol. Oxidative stress processes are one of many proposed mechanisms thought to contribute to nervous system dysfunction characterized in fetal alcohol syndrome (FAS). Therefore, this study examined neuroprotective effects of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience letters 1999-03, Vol.263 (2), p.189-192
Hauptverfasser: Mitchell, J.Jean, Paiva, Michael, Heaton, Marieta B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurodevelopmental damage can occur as a result of in utero exposure to alcohol. Oxidative stress processes are one of many proposed mechanisms thought to contribute to nervous system dysfunction characterized in fetal alcohol syndrome (FAS). Therefore, this study examined neuroprotective effects of antioxidant supplementation during ethanol (EtOH) treatment (0, 200, 400, 800 or 1600 mg/dl) combined with concomitants of EtOH exposure: acute (2-h) ischemia (aISCH) and chronic (16-h) hypoglycemia (cHG). The antioxidants vitamin E and β-carotene protected embryonic hippocampal cultures against 0–1600 mg/dl EtOH/aISCH/cHG treatments. In addition, neuronal viability, as measured by MTT ((3,4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; 5 mg/ml)), was equal to untreated cultures when supplemented with vitamin E or β-carotene at 0–800 mg/dl or 0–200 mg/dl EtOH/aISCH/cHG, respectively. These in vitro studies mirror potential in utero ethanol-exposed CNS conditions and may lead to therapeutic strategies targeted at attenuating neurodevelopmental FAS-related deficits.
ISSN:0304-3940
1872-7972
DOI:10.1016/S0304-3940(99)00144-5