A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems

We present an infeasible primal-dual interior point method for semidefinite optimization problems, making use of constraint reduction. We show that the algorithm is globally convergent and has polynomial complexity, the first such complexity result for primal-dual constraint reduction algorithms for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2015-08, Vol.166 (2), p.558-571
Hauptverfasser: Park, Sungwoo, O’Leary, Dianne P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an infeasible primal-dual interior point method for semidefinite optimization problems, making use of constraint reduction. We show that the algorithm is globally convergent and has polynomial complexity, the first such complexity result for primal-dual constraint reduction algorithms for any class of problems. Our algorithm is a modification of one with no constraint reduction due to Potra and Sheng (1998) and can be applied whenever the data matrices are block diagonal. It thus solves as special cases any optimization problem that is a linear, convex quadratic, convex quadratically constrained, or second-order cone problem.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-015-0714-z