Automatic Fusion of Hyperspectral Images and Laser Scans Using Feature Points
Automatic fusion of different kinds of image datasets is so intractable with diverse imaging principle. This paper presents a novel method for automatic fusion of two different images: 2D hyperspectral images acquired with a hyperspectral camera and 3D laser scans obtained with a laser scanner, with...
Gespeichert in:
Veröffentlicht in: | Journal of sensors 2015-01, Vol.2015 (2015), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Automatic fusion of different kinds of image datasets is so intractable with diverse imaging principle. This paper presents a novel method for automatic fusion of two different images: 2D hyperspectral images acquired with a hyperspectral camera and 3D laser scans obtained with a laser scanner, without any other sensor. Only a few corresponding feature points are used, which are automatically extracted from a scene viewed by the two sensors. Extraction method of feature points relies on SURF algorithm and camera model, which can convert a 3D laser scan into a 2D laser image with the intensity of the pixels defined by the attributes in the laser scan. Moreover, Collinearity Equation and Direct Linear Transformation are used to create the initial corresponding relationship of the two images. Adjustment is also used to create corrected values to eliminate errors. The experimental result shows that this method is successfully validated with images collected by a hyperspectral camera and a laser scanner. |
---|---|
ISSN: | 1687-725X 1687-7268 |
DOI: | 10.1155/2015/415361 |