On n-Widths of a Sobolev Function Class in Orlicz Spaces
This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the e...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2015-09, Vol.31 (9), p.1475-1486 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1486 |
---|---|
container_issue | 9 |
container_start_page | 1475 |
container_title | Acta mathematica Sinica. English series |
container_volume | 31 |
creator | Wang, Xiao Li Wu, Ga Ridi |
description | This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the exact values of Kolmogorov's widths, Gelfand's widths, and linear widths are obtained respectively, and the related extremal subspaces and optimal linear operators are given. |
doi_str_mv | 10.1007/s10114-015-4231-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730111605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665551725</cqvip_id><sourcerecordid>3769539221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7b73f122395a1c3e55a9c3c10949dcc7a19d9c2ce7778ac1dbcbe0aabea2bbc03</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9gsWFgMPjuO4xFVFJCQOhTEaDmO26ZK7TZOkODX4yoVQgxMd8P33rt7CF0CvQVK5V0ECpARCoJkjAORR2gEGVdE5iCPD3shID9FZzGuKRVC0XyEipnHnrzXVbeKOCywwfNQhsZ94GnvbVcHjyeNiRHXHs_aprZfeL411sVzdLIwTXQXhzlGb9OH18kTeZk9Pk_uX4jlrOiILCVfAGNcCQOWOyGMstwCVZmqrJUGVKUss05KWRgLVWlLR40pnWFlaSkfo5vBd9uGXe9ipzd1tK5pjHehjxokT59DTkVCr_-g69C3Pl2XKAoFK1SRJwoGyrYhxtYt9LatN6b91ED1vks9dKlTl3rfpZZJwwZNTKxfuvaX8z-iq0PQKvjlLul-kvJcCAGSCf4Nz4uAQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701828986</pqid></control><display><type>article</type><title>On n-Widths of a Sobolev Function Class in Orlicz Spaces</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Xiao Li ; Wu, Ga Ridi</creator><creatorcontrib>Wang, Xiao Li ; Wu, Ga Ridi</creatorcontrib><description>This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the exact values of Kolmogorov's widths, Gelfand's widths, and linear widths are obtained respectively, and the related extremal subspaces and optimal linear operators are given.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-015-4231-7</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Approximation ; Extreme values ; Functional analysis ; Functions (mathematics) ; Kolmogorov宽度 ; Linear operators ; Mathematical analysis ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Optimization ; Orlicz space ; Orlicz空间 ; Sobolev函数类 ; Studies ; Subspaces ; 度理论 ; 极值问题 ; 泛函分析 ; 精确值 ; 线性算子</subject><ispartof>Acta mathematica Sinica. English series, 2015-09, Vol.31 (9), p.1475-1486</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-7b73f122395a1c3e55a9c3c10949dcc7a19d9c2ce7778ac1dbcbe0aabea2bbc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-015-4231-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-015-4231-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Xiao Li</creatorcontrib><creatorcontrib>Wu, Ga Ridi</creatorcontrib><title>On n-Widths of a Sobolev Function Class in Orlicz Spaces</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the exact values of Kolmogorov's widths, Gelfand's widths, and linear widths are obtained respectively, and the related extremal subspaces and optimal linear operators are given.</description><subject>Approximation</subject><subject>Extreme values</subject><subject>Functional analysis</subject><subject>Functions (mathematics)</subject><subject>Kolmogorov宽度</subject><subject>Linear operators</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Orlicz space</subject><subject>Orlicz空间</subject><subject>Sobolev函数类</subject><subject>Studies</subject><subject>Subspaces</subject><subject>度理论</subject><subject>极值问题</subject><subject>泛函分析</subject><subject>精确值</subject><subject>线性算子</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwA9gsWFgMPjuO4xFVFJCQOhTEaDmO26ZK7TZOkODX4yoVQgxMd8P33rt7CF0CvQVK5V0ECpARCoJkjAORR2gEGVdE5iCPD3shID9FZzGuKRVC0XyEipnHnrzXVbeKOCywwfNQhsZ94GnvbVcHjyeNiRHXHs_aprZfeL411sVzdLIwTXQXhzlGb9OH18kTeZk9Pk_uX4jlrOiILCVfAGNcCQOWOyGMstwCVZmqrJUGVKUss05KWRgLVWlLR40pnWFlaSkfo5vBd9uGXe9ipzd1tK5pjHehjxokT59DTkVCr_-g69C3Pl2XKAoFK1SRJwoGyrYhxtYt9LatN6b91ED1vks9dKlTl3rfpZZJwwZNTKxfuvaX8z-iq0PQKvjlLul-kvJcCAGSCf4Nz4uAQw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Wang, Xiao Li</creator><creator>Wu, Ga Ridi</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150901</creationdate><title>On n-Widths of a Sobolev Function Class in Orlicz Spaces</title><author>Wang, Xiao Li ; Wu, Ga Ridi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7b73f122395a1c3e55a9c3c10949dcc7a19d9c2ce7778ac1dbcbe0aabea2bbc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Extreme values</topic><topic>Functional analysis</topic><topic>Functions (mathematics)</topic><topic>Kolmogorov宽度</topic><topic>Linear operators</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Orlicz space</topic><topic>Orlicz空间</topic><topic>Sobolev函数类</topic><topic>Studies</topic><topic>Subspaces</topic><topic>度理论</topic><topic>极值问题</topic><topic>泛函分析</topic><topic>精确值</topic><topic>线性算子</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiao Li</creatorcontrib><creatorcontrib>Wu, Ga Ridi</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiao Li</au><au>Wu, Ga Ridi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On n-Widths of a Sobolev Function Class in Orlicz Spaces</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>31</volume><issue>9</issue><spage>1475</spage><epage>1486</epage><pages>1475-1486</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the exact values of Kolmogorov's widths, Gelfand's widths, and linear widths are obtained respectively, and the related extremal subspaces and optimal linear operators are given.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-015-4231-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2015-09, Vol.31 (9), p.1475-1486 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730111605 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Approximation Extreme values Functional analysis Functions (mathematics) Kolmogorov宽度 Linear operators Mathematical analysis Mathematical functions Mathematics Mathematics and Statistics Optimization Orlicz space Orlicz空间 Sobolev函数类 Studies Subspaces 度理论 极值问题 泛函分析 精确值 线性算子 |
title | On n-Widths of a Sobolev Function Class in Orlicz Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20n-Widths%20of%20a%20Sobolev%20Function%20Class%20in%20Orlicz%20Spaces&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Wang,%20Xiao%20Li&rft.date=2015-09-01&rft.volume=31&rft.issue=9&rft.spage=1475&rft.epage=1486&rft.pages=1475-1486&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-015-4231-7&rft_dat=%3Cproquest_cross%3E3769539221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701828986&rft_id=info:pmid/&rft_cqvip_id=665551725&rfr_iscdi=true |