On n-Widths of a Sobolev Function Class in Orlicz Spaces

This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2015-09, Vol.31 (9), p.1475-1486
Hauptverfasser: Wang, Xiao Li, Wu, Ga Ridi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1486
container_issue 9
container_start_page 1475
container_title Acta mathematica Sinica. English series
container_volume 31
creator Wang, Xiao Li
Wu, Ga Ridi
description This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the exact values of Kolmogorov's widths, Gelfand's widths, and linear widths are obtained respectively, and the related extremal subspaces and optimal linear operators are given.
doi_str_mv 10.1007/s10114-015-4231-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730111605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665551725</cqvip_id><sourcerecordid>3769539221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7b73f122395a1c3e55a9c3c10949dcc7a19d9c2ce7778ac1dbcbe0aabea2bbc03</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9gsWFgMPjuO4xFVFJCQOhTEaDmO26ZK7TZOkODX4yoVQgxMd8P33rt7CF0CvQVK5V0ECpARCoJkjAORR2gEGVdE5iCPD3shID9FZzGuKRVC0XyEipnHnrzXVbeKOCywwfNQhsZ94GnvbVcHjyeNiRHXHs_aprZfeL411sVzdLIwTXQXhzlGb9OH18kTeZk9Pk_uX4jlrOiILCVfAGNcCQOWOyGMstwCVZmqrJUGVKUss05KWRgLVWlLR40pnWFlaSkfo5vBd9uGXe9ipzd1tK5pjHehjxokT59DTkVCr_-g69C3Pl2XKAoFK1SRJwoGyrYhxtYt9LatN6b91ED1vks9dKlTl3rfpZZJwwZNTKxfuvaX8z-iq0PQKvjlLul-kvJcCAGSCf4Nz4uAQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701828986</pqid></control><display><type>article</type><title>On n-Widths of a Sobolev Function Class in Orlicz Spaces</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Xiao Li ; Wu, Ga Ridi</creator><creatorcontrib>Wang, Xiao Li ; Wu, Ga Ridi</creatorcontrib><description>This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the exact values of Kolmogorov's widths, Gelfand's widths, and linear widths are obtained respectively, and the related extremal subspaces and optimal linear operators are given.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-015-4231-7</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Approximation ; Extreme values ; Functional analysis ; Functions (mathematics) ; Kolmogorov宽度 ; Linear operators ; Mathematical analysis ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Optimization ; Orlicz space ; Orlicz空间 ; Sobolev函数类 ; Studies ; Subspaces ; 度理论 ; 极值问题 ; 泛函分析 ; 精确值 ; 线性算子</subject><ispartof>Acta mathematica Sinica. English series, 2015-09, Vol.31 (9), p.1475-1486</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-7b73f122395a1c3e55a9c3c10949dcc7a19d9c2ce7778ac1dbcbe0aabea2bbc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-015-4231-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-015-4231-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Xiao Li</creatorcontrib><creatorcontrib>Wu, Ga Ridi</creatorcontrib><title>On n-Widths of a Sobolev Function Class in Orlicz Spaces</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the exact values of Kolmogorov's widths, Gelfand's widths, and linear widths are obtained respectively, and the related extremal subspaces and optimal linear operators are given.</description><subject>Approximation</subject><subject>Extreme values</subject><subject>Functional analysis</subject><subject>Functions (mathematics)</subject><subject>Kolmogorov宽度</subject><subject>Linear operators</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Orlicz space</subject><subject>Orlicz空间</subject><subject>Sobolev函数类</subject><subject>Studies</subject><subject>Subspaces</subject><subject>度理论</subject><subject>极值问题</subject><subject>泛函分析</subject><subject>精确值</subject><subject>线性算子</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwA9gsWFgMPjuO4xFVFJCQOhTEaDmO26ZK7TZOkODX4yoVQgxMd8P33rt7CF0CvQVK5V0ECpARCoJkjAORR2gEGVdE5iCPD3shID9FZzGuKRVC0XyEipnHnrzXVbeKOCywwfNQhsZ94GnvbVcHjyeNiRHXHs_aprZfeL411sVzdLIwTXQXhzlGb9OH18kTeZk9Pk_uX4jlrOiILCVfAGNcCQOWOyGMstwCVZmqrJUGVKUss05KWRgLVWlLR40pnWFlaSkfo5vBd9uGXe9ipzd1tK5pjHehjxokT59DTkVCr_-g69C3Pl2XKAoFK1SRJwoGyrYhxtYt9LatN6b91ED1vks9dKlTl3rfpZZJwwZNTKxfuvaX8z-iq0PQKvjlLul-kvJcCAGSCf4Nz4uAQw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Wang, Xiao Li</creator><creator>Wu, Ga Ridi</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150901</creationdate><title>On n-Widths of a Sobolev Function Class in Orlicz Spaces</title><author>Wang, Xiao Li ; Wu, Ga Ridi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7b73f122395a1c3e55a9c3c10949dcc7a19d9c2ce7778ac1dbcbe0aabea2bbc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Extreme values</topic><topic>Functional analysis</topic><topic>Functions (mathematics)</topic><topic>Kolmogorov宽度</topic><topic>Linear operators</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Orlicz space</topic><topic>Orlicz空间</topic><topic>Sobolev函数类</topic><topic>Studies</topic><topic>Subspaces</topic><topic>度理论</topic><topic>极值问题</topic><topic>泛函分析</topic><topic>精确值</topic><topic>线性算子</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiao Li</creatorcontrib><creatorcontrib>Wu, Ga Ridi</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiao Li</au><au>Wu, Ga Ridi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On n-Widths of a Sobolev Function Class in Orlicz Spaces</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>31</volume><issue>9</issue><spage>1475</spage><epage>1486</epage><pages>1475-1486</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the exact values of Kolmogorov's widths, Gelfand's widths, and linear widths are obtained respectively, and the related extremal subspaces and optimal linear operators are given.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-015-4231-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2015-09, Vol.31 (9), p.1475-1486
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_miscellaneous_1730111605
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Approximation
Extreme values
Functional analysis
Functions (mathematics)
Kolmogorov宽度
Linear operators
Mathematical analysis
Mathematical functions
Mathematics
Mathematics and Statistics
Optimization
Orlicz space
Orlicz空间
Sobolev函数类
Studies
Subspaces
度理论
极值问题
泛函分析
精确值
线性算子
title On n-Widths of a Sobolev Function Class in Orlicz Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20n-Widths%20of%20a%20Sobolev%20Function%20Class%20in%20Orlicz%20Spaces&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Wang,%20Xiao%20Li&rft.date=2015-09-01&rft.volume=31&rft.issue=9&rft.spage=1475&rft.epage=1486&rft.pages=1475-1486&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-015-4231-7&rft_dat=%3Cproquest_cross%3E3769539221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701828986&rft_id=info:pmid/&rft_cqvip_id=665551725&rfr_iscdi=true