On n-Widths of a Sobolev Function Class in Orlicz Spaces
This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the e...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2015-09, Vol.31 (9), p.1475-1486 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers the problem of n-widths of a Sobolev function class Ωr∞ determined by Pr(D) = DσПlj=1 (D2 - tj2I) in Orlicz spaces. The relationship between the extreme value problem and width theory is revealed by using the methods of functional analysis. Particularly, as σ = 0 or σ = 1, the exact values of Kolmogorov's widths, Gelfand's widths, and linear widths are obtained respectively, and the related extremal subspaces and optimal linear operators are given. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-015-4231-7 |