ITER test blanket module error field simulation experiments at DIII-D
Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L–H transition, the H-mode pedestal, edge localized m...
Gespeichert in:
Veröffentlicht in: | Nuclear Fusion 2011-10, Vol.51 (10), p.103028-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 10 |
container_start_page | 103028 |
container_title | Nuclear Fusion |
container_volume | 51 |
creator | Schaffer, M.J Snipes, J.A Gohil, P de Vries, P Evans, T.E Fenstermacher, M.E Gao, X Garofalo, A.M Gates, D.A Greenfield, C.M Heidbrink, W.W Kramer, G.J La Haye, R.J Liu, S Loarte, A Nave, M.F.F Osborne, T.H Oyama, N Park, J.-K Ramasubramanian, N Reimerdes, H Saibene, G Salmi, A Shinohara, K Spong, D.A Solomon, W.M Tala, T Zhu, Y.B Boedo, J.A Chuyanov, V Doyle, E.J Jakubowski, M Jhang, H Nazikian, R.M Pustovitov, V.D Schmitz, O Srinivasan, R Taylor, T.S Wade, M.R You, K.-I Zeng, L |
description | Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L–H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity
v
across the entire radial profile by as much as Δ
v
/
v
∼ 60% via non-resonant braking. Changes to global Δ
n
/
n
, Δβ/β and ΔH
98
/H
98
were ∼3 times smaller. These effects are stronger at higher β. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known
n
= 1 test field in both L- and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D
n
= 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few
n
= 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by
n
= 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small. |
doi_str_mv | 10.1088/0029-5515/51/10/103028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730100112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730100112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-d7fd2dc2ae5f8a50e41f746b6923b8b9603d4853f1ff0ee00b74305dd9ccc8193</originalsourceid><addsrcrecordid>eNqNkE1L5EAQhhtZwVn1L0izJy9xqtLpfBxlHDUgCDKem6S7GrObScd0D-i_t0MWL3oQCgqK5y14H8YuEK4QynINkFaJlCjXEtcIcQSk5RFbYZFhkok0_8VWn9AJ--39XwDMUIgV29a77RMP5ANv-2b4R4HvnTn0xGma3MRtR73hvtsf-iZ0buD0NtLU7WkInjeB39R1ndycsWPb9J7O_-9T9ny73W3uk4fHu3pz_ZBoCVVITGFNanTakLRlI4EytEWWt3mVirZsqxyEyUopLFoLRABtkQmQxlRa6xIrccr-LH-dD53yugukX7QbBtJBxd4FVDN0uUDj5F4PsZnad15TH-uRO3iFhQCMAjCNaL6genLeT2TVGLs103t8pma5avamZm9K4nKc5cYgLsHOjT_PJF8z37NqNFZ8AN7rhwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730100112</pqid></control><display><type>article</type><title>ITER test blanket module error field simulation experiments at DIII-D</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Schaffer, M.J ; Snipes, J.A ; Gohil, P ; de Vries, P ; Evans, T.E ; Fenstermacher, M.E ; Gao, X ; Garofalo, A.M ; Gates, D.A ; Greenfield, C.M ; Heidbrink, W.W ; Kramer, G.J ; La Haye, R.J ; Liu, S ; Loarte, A ; Nave, M.F.F ; Osborne, T.H ; Oyama, N ; Park, J.-K ; Ramasubramanian, N ; Reimerdes, H ; Saibene, G ; Salmi, A ; Shinohara, K ; Spong, D.A ; Solomon, W.M ; Tala, T ; Zhu, Y.B ; Boedo, J.A ; Chuyanov, V ; Doyle, E.J ; Jakubowski, M ; Jhang, H ; Nazikian, R.M ; Pustovitov, V.D ; Schmitz, O ; Srinivasan, R ; Taylor, T.S ; Wade, M.R ; You, K.-I ; Zeng, L</creator><creatorcontrib>Schaffer, M.J ; Snipes, J.A ; Gohil, P ; de Vries, P ; Evans, T.E ; Fenstermacher, M.E ; Gao, X ; Garofalo, A.M ; Gates, D.A ; Greenfield, C.M ; Heidbrink, W.W ; Kramer, G.J ; La Haye, R.J ; Liu, S ; Loarte, A ; Nave, M.F.F ; Osborne, T.H ; Oyama, N ; Park, J.-K ; Ramasubramanian, N ; Reimerdes, H ; Saibene, G ; Salmi, A ; Shinohara, K ; Spong, D.A ; Solomon, W.M ; Tala, T ; Zhu, Y.B ; Boedo, J.A ; Chuyanov, V ; Doyle, E.J ; Jakubowski, M ; Jhang, H ; Nazikian, R.M ; Pustovitov, V.D ; Schmitz, O ; Srinivasan, R ; Taylor, T.S ; Wade, M.R ; You, K.-I ; Zeng, L ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L–H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity
v
across the entire radial profile by as much as Δ
v
/
v
∼ 60% via non-resonant braking. Changes to global Δ
n
/
n
, Δβ/β and ΔH
98
/H
98
were ∼3 times smaller. These effects are stronger at higher β. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known
n
= 1 test field in both L- and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D
n
= 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few
n
= 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by
n
= 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/0029-5515/51/10/103028</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>Blanketing ; Braking ; Elm ; Errors ; Locking ; Mathematical models ; Modules ; Restoration</subject><ispartof>Nuclear Fusion, 2011-10, Vol.51 (10), p.103028-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-d7fd2dc2ae5f8a50e41f746b6923b8b9603d4853f1ff0ee00b74305dd9ccc8193</citedby><cites>FETCH-LOGICAL-c509t-d7fd2dc2ae5f8a50e41f746b6923b8b9603d4853f1ff0ee00b74305dd9ccc8193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0029-5515/51/10/103028/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,881,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1037099$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaffer, M.J</creatorcontrib><creatorcontrib>Snipes, J.A</creatorcontrib><creatorcontrib>Gohil, P</creatorcontrib><creatorcontrib>de Vries, P</creatorcontrib><creatorcontrib>Evans, T.E</creatorcontrib><creatorcontrib>Fenstermacher, M.E</creatorcontrib><creatorcontrib>Gao, X</creatorcontrib><creatorcontrib>Garofalo, A.M</creatorcontrib><creatorcontrib>Gates, D.A</creatorcontrib><creatorcontrib>Greenfield, C.M</creatorcontrib><creatorcontrib>Heidbrink, W.W</creatorcontrib><creatorcontrib>Kramer, G.J</creatorcontrib><creatorcontrib>La Haye, R.J</creatorcontrib><creatorcontrib>Liu, S</creatorcontrib><creatorcontrib>Loarte, A</creatorcontrib><creatorcontrib>Nave, M.F.F</creatorcontrib><creatorcontrib>Osborne, T.H</creatorcontrib><creatorcontrib>Oyama, N</creatorcontrib><creatorcontrib>Park, J.-K</creatorcontrib><creatorcontrib>Ramasubramanian, N</creatorcontrib><creatorcontrib>Reimerdes, H</creatorcontrib><creatorcontrib>Saibene, G</creatorcontrib><creatorcontrib>Salmi, A</creatorcontrib><creatorcontrib>Shinohara, K</creatorcontrib><creatorcontrib>Spong, D.A</creatorcontrib><creatorcontrib>Solomon, W.M</creatorcontrib><creatorcontrib>Tala, T</creatorcontrib><creatorcontrib>Zhu, Y.B</creatorcontrib><creatorcontrib>Boedo, J.A</creatorcontrib><creatorcontrib>Chuyanov, V</creatorcontrib><creatorcontrib>Doyle, E.J</creatorcontrib><creatorcontrib>Jakubowski, M</creatorcontrib><creatorcontrib>Jhang, H</creatorcontrib><creatorcontrib>Nazikian, R.M</creatorcontrib><creatorcontrib>Pustovitov, V.D</creatorcontrib><creatorcontrib>Schmitz, O</creatorcontrib><creatorcontrib>Srinivasan, R</creatorcontrib><creatorcontrib>Taylor, T.S</creatorcontrib><creatorcontrib>Wade, M.R</creatorcontrib><creatorcontrib>You, K.-I</creatorcontrib><creatorcontrib>Zeng, L</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>ITER test blanket module error field simulation experiments at DIII-D</title><title>Nuclear Fusion</title><description>Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L–H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity
v
across the entire radial profile by as much as Δ
v
/
v
∼ 60% via non-resonant braking. Changes to global Δ
n
/
n
, Δβ/β and ΔH
98
/H
98
were ∼3 times smaller. These effects are stronger at higher β. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known
n
= 1 test field in both L- and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D
n
= 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few
n
= 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by
n
= 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small.</description><subject>Blanketing</subject><subject>Braking</subject><subject>Elm</subject><subject>Errors</subject><subject>Locking</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Restoration</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1L5EAQhhtZwVn1L0izJy9xqtLpfBxlHDUgCDKem6S7GrObScd0D-i_t0MWL3oQCgqK5y14H8YuEK4QynINkFaJlCjXEtcIcQSk5RFbYZFhkok0_8VWn9AJ--39XwDMUIgV29a77RMP5ANv-2b4R4HvnTn0xGma3MRtR73hvtsf-iZ0buD0NtLU7WkInjeB39R1ndycsWPb9J7O_-9T9ny73W3uk4fHu3pz_ZBoCVVITGFNanTakLRlI4EytEWWt3mVirZsqxyEyUopLFoLRABtkQmQxlRa6xIrccr-LH-dD53yugukX7QbBtJBxd4FVDN0uUDj5F4PsZnad15TH-uRO3iFhQCMAjCNaL6genLeT2TVGLs103t8pma5avamZm9K4nKc5cYgLsHOjT_PJF8z37NqNFZ8AN7rhwg</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Schaffer, M.J</creator><creator>Snipes, J.A</creator><creator>Gohil, P</creator><creator>de Vries, P</creator><creator>Evans, T.E</creator><creator>Fenstermacher, M.E</creator><creator>Gao, X</creator><creator>Garofalo, A.M</creator><creator>Gates, D.A</creator><creator>Greenfield, C.M</creator><creator>Heidbrink, W.W</creator><creator>Kramer, G.J</creator><creator>La Haye, R.J</creator><creator>Liu, S</creator><creator>Loarte, A</creator><creator>Nave, M.F.F</creator><creator>Osborne, T.H</creator><creator>Oyama, N</creator><creator>Park, J.-K</creator><creator>Ramasubramanian, N</creator><creator>Reimerdes, H</creator><creator>Saibene, G</creator><creator>Salmi, A</creator><creator>Shinohara, K</creator><creator>Spong, D.A</creator><creator>Solomon, W.M</creator><creator>Tala, T</creator><creator>Zhu, Y.B</creator><creator>Boedo, J.A</creator><creator>Chuyanov, V</creator><creator>Doyle, E.J</creator><creator>Jakubowski, M</creator><creator>Jhang, H</creator><creator>Nazikian, R.M</creator><creator>Pustovitov, V.D</creator><creator>Schmitz, O</creator><creator>Srinivasan, R</creator><creator>Taylor, T.S</creator><creator>Wade, M.R</creator><creator>You, K.-I</creator><creator>Zeng, L</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20111001</creationdate><title>ITER test blanket module error field simulation experiments at DIII-D</title><author>Schaffer, M.J ; Snipes, J.A ; Gohil, P ; de Vries, P ; Evans, T.E ; Fenstermacher, M.E ; Gao, X ; Garofalo, A.M ; Gates, D.A ; Greenfield, C.M ; Heidbrink, W.W ; Kramer, G.J ; La Haye, R.J ; Liu, S ; Loarte, A ; Nave, M.F.F ; Osborne, T.H ; Oyama, N ; Park, J.-K ; Ramasubramanian, N ; Reimerdes, H ; Saibene, G ; Salmi, A ; Shinohara, K ; Spong, D.A ; Solomon, W.M ; Tala, T ; Zhu, Y.B ; Boedo, J.A ; Chuyanov, V ; Doyle, E.J ; Jakubowski, M ; Jhang, H ; Nazikian, R.M ; Pustovitov, V.D ; Schmitz, O ; Srinivasan, R ; Taylor, T.S ; Wade, M.R ; You, K.-I ; Zeng, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-d7fd2dc2ae5f8a50e41f746b6923b8b9603d4853f1ff0ee00b74305dd9ccc8193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Blanketing</topic><topic>Braking</topic><topic>Elm</topic><topic>Errors</topic><topic>Locking</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Restoration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaffer, M.J</creatorcontrib><creatorcontrib>Snipes, J.A</creatorcontrib><creatorcontrib>Gohil, P</creatorcontrib><creatorcontrib>de Vries, P</creatorcontrib><creatorcontrib>Evans, T.E</creatorcontrib><creatorcontrib>Fenstermacher, M.E</creatorcontrib><creatorcontrib>Gao, X</creatorcontrib><creatorcontrib>Garofalo, A.M</creatorcontrib><creatorcontrib>Gates, D.A</creatorcontrib><creatorcontrib>Greenfield, C.M</creatorcontrib><creatorcontrib>Heidbrink, W.W</creatorcontrib><creatorcontrib>Kramer, G.J</creatorcontrib><creatorcontrib>La Haye, R.J</creatorcontrib><creatorcontrib>Liu, S</creatorcontrib><creatorcontrib>Loarte, A</creatorcontrib><creatorcontrib>Nave, M.F.F</creatorcontrib><creatorcontrib>Osborne, T.H</creatorcontrib><creatorcontrib>Oyama, N</creatorcontrib><creatorcontrib>Park, J.-K</creatorcontrib><creatorcontrib>Ramasubramanian, N</creatorcontrib><creatorcontrib>Reimerdes, H</creatorcontrib><creatorcontrib>Saibene, G</creatorcontrib><creatorcontrib>Salmi, A</creatorcontrib><creatorcontrib>Shinohara, K</creatorcontrib><creatorcontrib>Spong, D.A</creatorcontrib><creatorcontrib>Solomon, W.M</creatorcontrib><creatorcontrib>Tala, T</creatorcontrib><creatorcontrib>Zhu, Y.B</creatorcontrib><creatorcontrib>Boedo, J.A</creatorcontrib><creatorcontrib>Chuyanov, V</creatorcontrib><creatorcontrib>Doyle, E.J</creatorcontrib><creatorcontrib>Jakubowski, M</creatorcontrib><creatorcontrib>Jhang, H</creatorcontrib><creatorcontrib>Nazikian, R.M</creatorcontrib><creatorcontrib>Pustovitov, V.D</creatorcontrib><creatorcontrib>Schmitz, O</creatorcontrib><creatorcontrib>Srinivasan, R</creatorcontrib><creatorcontrib>Taylor, T.S</creatorcontrib><creatorcontrib>Wade, M.R</creatorcontrib><creatorcontrib>You, K.-I</creatorcontrib><creatorcontrib>Zeng, L</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nuclear Fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaffer, M.J</au><au>Snipes, J.A</au><au>Gohil, P</au><au>de Vries, P</au><au>Evans, T.E</au><au>Fenstermacher, M.E</au><au>Gao, X</au><au>Garofalo, A.M</au><au>Gates, D.A</au><au>Greenfield, C.M</au><au>Heidbrink, W.W</au><au>Kramer, G.J</au><au>La Haye, R.J</au><au>Liu, S</au><au>Loarte, A</au><au>Nave, M.F.F</au><au>Osborne, T.H</au><au>Oyama, N</au><au>Park, J.-K</au><au>Ramasubramanian, N</au><au>Reimerdes, H</au><au>Saibene, G</au><au>Salmi, A</au><au>Shinohara, K</au><au>Spong, D.A</au><au>Solomon, W.M</au><au>Tala, T</au><au>Zhu, Y.B</au><au>Boedo, J.A</au><au>Chuyanov, V</au><au>Doyle, E.J</au><au>Jakubowski, M</au><au>Jhang, H</au><au>Nazikian, R.M</au><au>Pustovitov, V.D</au><au>Schmitz, O</au><au>Srinivasan, R</au><au>Taylor, T.S</au><au>Wade, M.R</au><au>You, K.-I</au><au>Zeng, L</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ITER test blanket module error field simulation experiments at DIII-D</atitle><jtitle>Nuclear Fusion</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>51</volume><issue>10</issue><spage>103028</spage><epage>11</epage><pages>103028-11</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><abstract>Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L–H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity
v
across the entire radial profile by as much as Δ
v
/
v
∼ 60% via non-resonant braking. Changes to global Δ
n
/
n
, Δβ/β and ΔH
98
/H
98
were ∼3 times smaller. These effects are stronger at higher β. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known
n
= 1 test field in both L- and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D
n
= 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few
n
= 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by
n
= 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/0029-5515/51/10/103028</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear Fusion, 2011-10, Vol.51 (10), p.103028-11 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730100112 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Blanketing Braking Elm Errors Locking Mathematical models Modules Restoration |
title | ITER test blanket module error field simulation experiments at DIII-D |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ITER%20test%20blanket%20module%20error%20field%20simulation%20experiments%20at%20DIII-D&rft.jtitle=Nuclear%20Fusion&rft.au=Schaffer,%20M.J&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2011-10-01&rft.volume=51&rft.issue=10&rft.spage=103028&rft.epage=11&rft.pages=103028-11&rft.issn=0029-5515&rft.eissn=1741-4326&rft_id=info:doi/10.1088/0029-5515/51/10/103028&rft_dat=%3Cproquest_iop_p%3E1730100112%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730100112&rft_id=info:pmid/&rfr_iscdi=true |