An improvement to linear-elastic procedures for seismic performance assessment

An improved linear‐elastic analysis procedure is developed in this paper as a simple approximate method for displacement‐based seismic assessment of the existing buildings. The procedure is mainly based on reducing the stiffness of structural members that are expected to respond in the inelastic ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earthquake engineering & structural dynamics 2010-07, Vol.39 (8), p.907-931
Hauptverfasser: Gunay, Mehmet Selim, Sucuoglu, Haluk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An improved linear‐elastic analysis procedure is developed in this paper as a simple approximate method for displacement‐based seismic assessment of the existing buildings. The procedure is mainly based on reducing the stiffness of structural members that are expected to respond in the inelastic range in a single global iteration step. Modal spectral displacement demands are determined from the equal displacement rule. Response predictions obtained from the proposed procedure are evaluated comparatively by using the results of benchmark nonlinear response history analysis, and both the conventional and the multi‐mode pushover analyses. In comparative evaluations, a twelve‐story RC plane frame and a six‐story unsymmetrical‐plan RC frame are employed by using 91 ground motion components. It is observed that the proposed procedure estimates the flexural deformation demands in deformation‐controlled members and the shear forces in force‐controlled members with reasonable accuracy. Copyright © 2010 John Wiley & Sons, Ltd.
ISSN:0098-8847
1096-9845
1096-9845
DOI:10.1002/eqe.980