On Sierpiński carpets and doubling measures
According to the size of sets in the sense of doubling measures, subsets of the Euclidean space R super(n) can be divided into six classes: very fat VF, fairly fat FF, minimally fat MF, very thin VT, fairly thin FT and minimally thin MT. Let S be a Sierpinski carpet and let C be anyone of the above...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2014-06, Vol.27 (6), p.1287-1298 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to the size of sets in the sense of doubling measures, subsets of the Euclidean space R super(n) can be divided into six classes: very fat VF, fairly fat FF, minimally fat MF, very thin VT, fairly thin FT and minimally thin MT. Let S be a Sierpinski carpet and let C be anyone of the above classes of sets in the plane. We obtain a sufficient and necessary condition for S [setmembership] C in terms of the defining data of S. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/0951-7715/27/6/1287 |