On Sierpiński carpets and doubling measures

According to the size of sets in the sense of doubling measures, subsets of the Euclidean space R super(n) can be divided into six classes: very fat VF, fairly fat FF, minimally fat MF, very thin VT, fairly thin FT and minimally thin MT. Let S be a Sierpinski carpet and let C be anyone of the above...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2014-06, Vol.27 (6), p.1287-1298
Hauptverfasser: Peng, Fengji, Wen, Shengyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to the size of sets in the sense of doubling measures, subsets of the Euclidean space R super(n) can be divided into six classes: very fat VF, fairly fat FF, minimally fat MF, very thin VT, fairly thin FT and minimally thin MT. Let S be a Sierpinski carpet and let C be anyone of the above classes of sets in the plane. We obtain a sufficient and necessary condition for S [setmembership] C in terms of the defining data of S.
ISSN:0951-7715
1361-6544
DOI:10.1088/0951-7715/27/6/1287