On the lengths of basic intervals in beta expansions
Let beta > 1 be a real number and let ([subset or is implied by] sub(1)(x, beta ), [subset or is implied by] sub(2)(x, beta ),...) be the digit sequence in the beta -expansion of a point x [subset or is implied by] (0, 1]. This note is concerned with the length of the nth order basic interval con...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2012-05, Vol.25 (5), p.1329-1343 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let beta > 1 be a real number and let ([subset or is implied by] sub(1)(x, beta ), [subset or is implied by] sub(2)(x, beta ),...) be the digit sequence in the beta -expansion of a point x [subset or is implied by] (0, 1]. This note is concerned with the length of the nth order basic interval containing x, denoted by I sub(n)(x), which consists of those points y [subset or is implied by] (0, 1] such that [subset or is implied by] sub(j)(y, beta ) = [subset or is implied by] sub(j)(x, beta ) for all 1 [< or =, slant] j [< or =, slant] n. We establish a relationship between the length of I sub(n)(x) and the beta -expansion of 1, which enables us to obtain the exact value of the length of I sub(n)(x). As an application, we prove that the growth of the length of I sub(n)(x) is multifractal and that the multifractal spectrum depends on beta . |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/0951-7715/25/5/1329 |