On the lengths of basic intervals in beta expansions

Let beta > 1 be a real number and let ([subset or is implied by] sub(1)(x, beta ), [subset or is implied by] sub(2)(x, beta ),...) be the digit sequence in the beta -expansion of a point x [subset or is implied by] (0, 1]. This note is concerned with the length of the nth order basic interval con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2012-05, Vol.25 (5), p.1329-1343
Hauptverfasser: FAN, Ai-Hua, WANG, Bao-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let beta > 1 be a real number and let ([subset or is implied by] sub(1)(x, beta ), [subset or is implied by] sub(2)(x, beta ),...) be the digit sequence in the beta -expansion of a point x [subset or is implied by] (0, 1]. This note is concerned with the length of the nth order basic interval containing x, denoted by I sub(n)(x), which consists of those points y [subset or is implied by] (0, 1] such that [subset or is implied by] sub(j)(y, beta ) = [subset or is implied by] sub(j)(x, beta ) for all 1 [< or =, slant] j [< or =, slant] n. We establish a relationship between the length of I sub(n)(x) and the beta -expansion of 1, which enables us to obtain the exact value of the length of I sub(n)(x). As an application, we prove that the growth of the length of I sub(n)(x) is multifractal and that the multifractal spectrum depends on beta .
ISSN:0951-7715
1361-6544
DOI:10.1088/0951-7715/25/5/1329