Genetic algorithms for the analysis of Bayesian hierarchical partition models

Hierarchical partition models (see Malec and Sedransk, 1992, Consonni and Veronese, 1995) aim at finding an optimal grouping (partition) of a set of experiments regarding a target variable. In this class of models the partition is regarded as an unknown parameter, and one of the main goals is comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods & applications 2001-01, Vol.10 (1-3), p.113-121
Hauptverfasser: Borroni, Claudio Giovanni, Piccarreta, Raffaella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hierarchical partition models (see Malec and Sedransk, 1992, Consonni and Veronese, 1995) aim at finding an optimal grouping (partition) of a set of experiments regarding a target variable. In this class of models the partition is regarded as an unknown parameter, and one of the main goals is computing the posterior distribution over the class of the possible partitions. This problem has been addressed in Sampietro and Veronese (1998), where a Metropolis-Hastings algorithm is applied. In this paper the performance of an alternative procedure, based on the logic of genetic algorithms, is evaluated. The results of the two approaches are compared, even if a conjoint use of them is to be advised.[PUBLICATION ABSTRACT]
ISSN:1618-2510
1613-981X
DOI:10.1007/BF02511643