Synchrotron radiation computed tomography for experimental validation of a tensile strength model for unidirectional fibre-reinforced composites
Synchrotron radiation computed tomography has been used to analyse fibre break accumulation in unidirectional composites loaded in tension. The data are compared to model predictions. The model only slightly overestimated the composite failure strain, but predictions of fibre break density were too...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2015-10, Vol.77, p.106-113 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synchrotron radiation computed tomography has been used to analyse fibre break accumulation in unidirectional composites loaded in tension. The data are compared to model predictions. The model only slightly overestimated the composite failure strain, but predictions of fibre break density were too high, which can be mainly attributed to errors in the Weibull distribution. Both the number and percentage of interacting fibre break clusters were under-predicted by the model. This was attributed to an underestimation of stress concentrations in the model. While the experimental observations revealed mainly co-planar clusters, the model predicted mainly diffuse clusters. The experiments showed that the clusters did grow any further after their formation, while the model predicted a gradual development. Both local and dynamic stress concentrations were hypothesised to be key features for further exploration. The discrepancies identified, inform suggestions for directions advancing the state-of-the-art strength models of UD composites. |
---|---|
ISSN: | 1359-835X 1878-5840 |
DOI: | 10.1016/j.compositesa.2015.06.018 |