Covariance-Based DoA Estimation in a Krylov Subspace

Covariance-based DoA estimation (CB-DoA) algorithms represent lower computational complexity alternatives to the traditional ESPRIT approach. This paper investigates CB-DoA using Krylov-subspace techniques (including Arnoldi’s and Lanczos’ updates) with respect to the resulting computational cost an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2015-07, Vol.34 (7), p.2363-2379
Hauptverfasser: Ferreira, Tadeu N., de Campos, Marcello L. R., Netto, Sergio L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covariance-based DoA estimation (CB-DoA) algorithms represent lower computational complexity alternatives to the traditional ESPRIT approach. This paper investigates CB-DoA using Krylov-subspace techniques (including Arnoldi’s and Lanczos’ updates) with respect to the resulting computational cost and estimation error performance. The proposed modifications also allow an automatic estimation of the number of sources. Computational analyses performed for the resulting CB-DoA algorithm indicate cost savings above 60 % in comparison with the standard CB-DoA implementation, which already represents a 20 % improvement upon its ESPRIT counterpart, at an equivalent mean squared error level, as verified in numerical simulations.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-014-9966-3